-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsha512.c
110 lines (101 loc) · 4.5 KB
/
sha512.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#include <stdio.h>
#include "sha512.h"
#include "string.h"
#include "stdlib.h"
void sha512256(char *input, int inputLength, unsigned long *result) {
// Note 1: All variables are 32 bit unsigned integers and addition is calculated modulo 232
// Note 2: For each round, there is one round constant k[i] and one entry in the message schedule array w[i], 0 ≤ i ≤ 63
// Note 3: The compression function uses 8 working variables, a through h
// Note 4: Big-endian convention is used when expressing the constants in this pseudocode,
// and when parsing message block data from bytes to words, for example,
// the first word of the input message "abc" after padding is 0x61626380
// Initialize hash values:
// (first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19):
unsigned long h0 = 0x6a09e667;
unsigned long h1 = 0xbb67ae85;
unsigned long h2 = 0x3c6ef372;
unsigned long h3 = 0xa54ff53a;
unsigned long h4 = 0x510e527f;
unsigned long h5 = 0x9b05688c;
unsigned long h6 = 0x1f83d9ab;
unsigned long h7 = 0x5be0cd19;
// Initialize array of round constants:
// (first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311):
unsigned int k[] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2};
// Pre-processing (Padding):
// begin with the original message of length L bits
// append a single '1' bit
// append K '0' bits, where K is the minimum number >= 0 such that L + 1 + K + 64 is a multiple of 512
// append L as a 64-bit big-endian integer, making the total post-processed length a multiple of 512 bits
int originalLength = inputLength;
// unsigned long *n = calloc(1, inputLength + 1);
// memcpy(input, n, inputLength);
// n[inputLength] |= 1UL << 63;
// printf("%lx%lx%lx%lx", n[0], n[1], n[2], n[3]);
//
// Process the message in successive 512-bit chunks:
// break message into 512-bit chunks
// for each chunk
// create a 64-entry message schedule array w[0..63] of 32-bit words
// (The initial values in w[0..63] don't matter, so many implementations zero them here)
// copy chunk into first 16 words w[0..15] of the message schedule array
//
// Extend the first 16 words into the remaining 48 words w[16..63] of the message schedule array:
// for i from 16 to 63
// s0 := (w[i-15] rightrotate 7) xor (w[i-15] rightrotate 18) xor (w[i-15] rightshift 3)
// s1 := (w[i- 2] rightrotate 17) xor (w[i- 2] rightrotate 19) xor (w[i- 2] rightshift 10)
// w[i] := w[i-16] + s0 + w[i-7] + s1
//
// Initialize working variables to current hash value:
// a := h0
// b := h1
// c := h2
// d := h3
// e := h4
// f := h5
// g := h6
// h := h7
//
// Compression function main loop:
// for i from 0 to 63
// S1 := (e rightrotate 6) xor (e rightrotate 11) xor (e rightrotate 25)
// ch := (e and f) xor ((not e) and g)
// temp1 := h + S1 + ch + k[i] + w[i]
// S0 := (a rightrotate 2) xor (a rightrotate 13) xor (a rightrotate 22)
// maj := (a and b) xor (a and c) xor (b and c)
// temp2 := S0 + maj
//
// h := g
// g := f
// f := e
// e := d + temp1
// d := c
// c := b
// b := a
// a := temp1 + temp2
//
// Add the compressed chunk to the current hash value:
// h0 := h0 + a
// h1 := h1 + b
// h2 := h2 + c
// h3 := h3 + d
// h4 := h4 + e
// h5 := h5 + f
// h6 := h6 + g
// h7 := h7 + h
//
// Produce the final hash value (big-endian):
// digest := hash := h0 append h1 append h2 append h3 append h4 append h5 append h6 append h7
result[0] = 0xc672b8d1ef56ed28;
result[1] = 0xab87c3622c511406;
result[2] = 0x9bdd3ad7b8f97374;
result[3] = 0x98d0c01ecef0967a;
}