-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathbase_options.py
471 lines (410 loc) · 24.1 KB
/
base_options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
import argparse
import numpy as np
import os
import torch
from secrets import choice
class BaseOptions():
def get_arguments(self):
_exp_mode = ['coldbrew', 'I2_GTL'][1]
if _exp_mode=='coldbrew':
_lr = 0.005
elif _exp_mode=='I2_GTL':
_lr = 0.001
# ------- build up common parameters for Cold Brew and I2-GTL -------
parser = argparse.ArgumentParser(description='Tail and cold start generalization')
parser.add_argument('--exp_mode', type=str, default=_exp_mode)
parser.add_argument("--lr", type=float, default=_lr, help="learning rate")
parser.add_argument("--dropout", type=float, default=0.2)
parser.add_argument('--batch_size', type=int, default=64 * 1024)
parser.add_argument("--epochs", type=int, default=1500)
# ------- build up the parameters for node classification (Cold Brew) -------
parser.add_argument('--samp_size_p', type=int, default=200)
parser.add_argument('--samp_size_n_train', type=int, default=200)
parser.add_argument('--samp_size_n_test_times_p', type=int, default=20)
parser.add_argument('--dim_learnable_input', type=int, default=0, help="This arguments controls the featureless mode. If set to 0, no change to original GNN; otherwise, discard input features, and use learnable embeddings of the specified dimension.")
parser.add_argument('--unify_mlps', type=int, default=0, help="auxiliary function for batch training: if set to True, reset the MLP type methods' coefficient.")
parser.add_argument('--force_set_to_best_config', type=int, default=1, help="set dataset dependent configs.")
parser.add_argument('--want_headtail', type=int, default=1, help="wheter to add head and tail evaluation results as output.")
parser.add_argument('--num_layers', type=int, default=2, help="used for TeacherGNN")
parser.add_argument('--studentMLP__skip_conn_T_and_res_blks', type=str, default='', help="architecture options for arch search of studentMLP. Use default is not doing architecture search.")
parser.add_argument('--StudentMLP__dim_model', type=int, default=-1)
parser.add_argument('--studentMLP__opt_lr', type=str, default='', help="optimization configuration for the studentMLP, better use default.")
parser.add_argument('--LP__which_corr_and_DAD', type=str, default='', help="two hyperpatameters in label propagation; better use default.")
parser.add_argument('--LP__num_propagations', type=int, default=-1, help="number of propagations in label propagation.")
parser.add_argument('--LP__alpha', type=float, default=-1, help="the alpha coefficient for label propagation")
parser.add_argument("--SEMLP_topK_2_replace", type=int, default=2, help="the hyper parameter used to replace with the top K best neighbors")
parser.add_argument("--SEMLP__include_part1out", type=int, default=1, help="whether the part1 of cold brew's MLP is concatenated during part 2 training.")
parser.add_argument("--dropout_MLP", type=float, default=0.2, help="dropout rate for Cold Brew MLP (both part1 and part2) and StudentBaseMLP modules.")
parser.add_argument("--SEMLP_part1_arch", type=str, default='2layer', choices=['residual', '2layer', '3layer', '4layer'], help="architecture of part1 of Cold Brew MLP")
parser.add_argument('--has_proj2class', type=int, default=0, help="whether cold brew's TeacherGNN has additional projection head")
parser.add_argument("--whetherHasSE", type=str, default='000', choices=['100', '001', '111', '000'], help="whether cold brew's TeacherGNN has structural embedding.")
parser.add_argument("--se_reg", type=float, default=10, help="regularization coefficient for cold brew's structural embedding")
parser.add_argument("--graphMLP_reg", type=float, default=0., choices=[0., 1., 10., 100.], help="regularization coefficient in GraphMLP")
parser.add_argument("--graphMLP_tau", type=float, default=2.0, choices=[0.5, 1.0, 2.0], help="the coefficient tau in GraphMLP")
parser.add_argument("--graphMLP_r", type=int, default=3, choices=[2, 3, 4], help="the coefficient r (number of r-hop neighbors to consider) in GraphMLP")
parser.add_argument("--change_to_featureless", type=int, default=0, help="whether switch to featureless graph.")
parser.add_argument("--do_deg_analyze", type=int, default=1, help="if True, analyze graph data. has to be true, otherwise 'large_deg_mask' is not assigned and will bug.")
parser.add_argument("--train_which", type=str, default='TeacherGNN', choices=['TeacherGNN', 'SEMLP', 'LP','StudentBaseMLP','GraphMLP','proj2class'])
parser.add_argument("--task", type=str, default='nodeC')
parser.add_argument("--dataset", type=str, default='', choices=['Cora','Citeseer','Pubmed','ogbn-arxiv','chameleon','ACTOR','squirrel','WISCONSIN','CORNELL','TEXAS'])
parser.add_argument("--use_special_split", type=int, default=1)
parser.add_argument('--optfun', type=str, default='torch.optim.Adam', choices=['torch.optim.Adam', 'torch.optim.SGD'])
parser.add_argument('--manual_assign_GPU', type=int, default=-9999, help="default=-9999, means to choose bestGPU")
parser.add_argument('--random_seed', type=int, default=100)
parser.add_argument('--N_exp', type=int, default=1)
parser.add_argument('--resume', action='store_true', default=False)
parser.add_argument("--cuda", type=bool, default=True, required=False,
help="whether run on cuda or not (bool value)")
parser.add_argument('--cuda_num', type=int, default=0, help="GPU number")
parser.add_argument('--records_desc', type=str, default='res_connection',
help="file name of training records, try to make your exp settings directly readable from this name, e.g., gcn_PairNorm")
parser.add_argument('--records_path', type=str, default='.', help="saving location of training records")
parser.add_argument('--compare_model', type=int, default=0,
help="0 means compare single trick, 1 means compare model, 2 means compare trick combinations")
parser.add_argument('--type_model', type=str, default="GCN",
choices=['GCN', 'GAT', 'SGC', 'GCNII', 'DAGNN', 'GPRGNN', 'APPNP', 'JKNet', 'DeeperGCN'])
parser.add_argument('--type_trick', type=str, default='Initial+BatchNorm', help="type of residual/dropout/normalization trics used in the TeacherGNN of Cold Brew. Can be one of ['Initial', 'Jumping', 'Residual', ''] + one of ['GroupNorm', 'BatchNorm', 'NoNorm']")
parser.add_argument('--layer_agg', type=str, default='concat',
choices=['concat', 'maxpool', 'attention', 'mean'],
help='aggregation function for skip connections')
parser.add_argument('--res_alpha', type=float, default=0.1,
help='the trade off parameter of some res connections')
parser.add_argument('--patience', type=int, default=100,
help="patience step for early stopping") # 5e-4
parser.add_argument("--multi_label", type=bool, default=False,
help="multi_label or single_label task")
parser.add_argument('--weight_decay', type=float, default=5e-4,
help="weight decay") # 5e-4
parser.add_argument('--dim_hidden', type=int, default=64)
parser.add_argument('--transductive', type=bool, default=True,
help='transductive or inductive setting')
parser.add_argument('--float_or_double', type=str, default="float", required=False,
help='do you want to train your model with float or double precision')
parser.add_argument('--type_norm', type=str, default="None")
parser.add_argument('--adj_dropout', type=float, default=0.5,
help="dropout rate in APPNP") # 5e-4
parser.add_argument('--edge_dropout', type=float, default=0.2,
help="dropout rate in EdgeDrop") # 5e-4
parser.add_argument('--node_norm_type', type=str, default="n", choices=['n', 'v', 'm', 'srv', 'pr'])
parser.add_argument('--skip_weight', type=float, default=None)
parser.add_argument('--num_groups', type=int, default=None)
parser.add_argument('--prog', type=str, default='', help="support for batch running mode: progress")
parser.add_argument('--rexName', type=str, default="res.npy",
help="support for batch running mode: record's name")
parser.add_argument('--graph_dropout', type=float, default=0.2,
help="graph dropout rate (for dropout tricks)") # 5e-4
parser.add_argument('--layerwise_dropout', action='store_true', default=False)
# ------- build up the parameters for link prediction transfer learning (I2-GTL) -------
parser.add_argument('--public_data_convert_overlapped_subgraph', type=bool, default=True)
parser.add_argument('--transfer_setting', type=str, default='i2t', choices=['t2t', 'u2t', 'i2t', 'u', 'i', ''])
parser.add_argument('--linkpred_baseline', type=str, default='', choices=['', 'EGI', 'DGI'])
parser.add_argument('--edge_lp_mode', type=str, default='logit', choices=['emb', 'logit', 'xmc', '' ])
parser.add_argument('--ELP_alpha', type=str, default=0.995)
parser.add_argument('--num_propagations', type=str, default=5)
parser.add_argument('--LP_device', type=str, default='cuda:4', choices=['cpu', 'cuda:0', 'cuda:4'])
parser.add_argument('--exp_on_cold_edge', type=bool, default=False)
parser.add_argument('--encoder', type=str, default='SAGE', choices=['SAGE','MLP','CN','AA','PPR'])
parser.add_argument('--predictor', type=str, default='DOT', choices=['MLP', 'DOT'])
parser.add_argument('--optimizer', type=str, default='Adam')
parser.add_argument('--loss_func', type=str, default='ce_loss', choices=['AUC', 'ce_loss', 'log_rank_loss', 'info_nce_loss'])
parser.add_argument('--neg_sampler', type=str, default='global')
parser.add_argument('--data_name', type=str, default='ogbl-citation2', choices=['ogbl-citation2','ogbl-collab'])
parser.add_argument('--data_path', type=str, default='dataset')
parser.add_argument('--eval_metric', type=str, default='recall_my@1.25', choices=['hits', 'mrr','recall_my@0.8', 'recall_my@1', 'recall_my@1.25', 'recall_my@0'])
parser.add_argument('--res_dir', type=str, default='')
parser.add_argument('--pretrain_emb', type=str, default='')
parser.add_argument('--gnn_num_layers', type=int, default=2)
parser.add_argument('--mlp_num_layers', type=int, default=2)
parser.add_argument('--emb_hidden_channels', type=int, default=256)
parser.add_argument('--gnn_hidden_channels', type=int, default=256)
parser.add_argument('--mlp_hidden_channels', type=int, default=256)
parser.add_argument('--grad_clip_norm', type=float, default=2.0)
parser.add_argument('--num_neg', type=int, default=3)
parser.add_argument('--log_steps', type=int, default=1)
parser.add_argument('--eval_steps', type=int, default=5)
parser.add_argument('--runs', type=int, default=10)
parser.add_argument('--year', type=int, default=2010)
parser.add_argument('--linkpred_device', type=int, default=1)
parser.add_argument('--use_node_feats', type=str2bool, default=False)
parser.add_argument('--use_coalesce', type=str2bool, default=False)
parser.add_argument('--train_node_emb', type=str2bool, default=True)
parser.add_argument('--train_on_subgraph', type=str2bool, default=True)
parser.add_argument('--use_valedges_as_input', type=str2bool, default=True)
parser.add_argument('--eval_last_best', type=str2bool, default=True)
args = parser.parse_args()
if args.unify_mlps:
unify_mlps(args)
args = self.reset_dataset_dependent_parameters(args)
args = self.ini_records_saver(args)
if args.manual_assign_GPU != -9999:
args.cuda_num = args.manual_assign_GPU
elif torch.cuda.is_available():
args.cuda_num = bestGPU(True)
set_labprop_configs(args)
if args.force_set_to_best_config:
force_set_to_best_config(args)
print(
f'\nConfigs: \n\tdataset = < {args.dataset} >\n\ttrain_which = < {args.train_which} >\n\ttype_trick = < {args.type_trick} >\n\tnum_layers = < {args.num_layers} >\n\tdim_hidden = < {args.dim_hidden} >\n\tGPU actually use = < {args.cuda_num} >\n\n')
# ---- setup some manual hyperparameters ----
if args.exp_mode=='coldbrew':
args.has_loss_component_nodewise = True
args.has_loss_component_edgewise = False
elif args.exp_mode=='I2_GTL':
args.has_loss_component_nodewise = False
args.has_loss_component_edgewise = True
if args.linkpred_baseline in ['EGI', 'DGI']:
args.encoder='MLP'
args.use_node_feats = True
return args
def ini_records_saver(self, args):
records_file = os.path.join(args.records_path, args.records_desc)
if os.path.exists(records_file):
records_file_backup = os.path.join(args.records_path, args.records_desc + ' - backup')
print(
f'\n\n !!! Warning !!! assigned records_file < {records_file} > already exists, now re-name the previous one to < {records_file_backup} >\n\n')
os.rename(records_file, records_file_backup)
args.records_file = records_file
assert not os.path.exists(records_file)
return args
## setting the common hyperparameters used for comparing different methods of a trick
def reset_dataset_dependent_parameters(self, args):
if 'betr' in args.dataset:
args.num_classes = self.betr_gcn_dout
args.num_feats = self.betr_num_feats
args.dropout = 0.4
args.weight_decay = 5e-4
args.dim_hidden = 128
args.activation = 'relu'
elif args.dataset == 'Cora':
args.num_feats = 1433
args.num_classes = 7
args.N_nodes = 2708
args.dropout = 0.6
args.weight_decay = 5e-4
args.patience = 100
args.dim_hidden = 64
args.activation = 'relu'
elif args.dataset == 'Pubmed':
args.num_feats = 500
args.num_classes = 3
args.N_nodes = 19717
args.dropout = 0.5
args.weight_decay = 5e-4
args.patience = 100
args.dim_hidden = 256
args.activation = 'relu'
elif args.dataset == 'Citeseer':
args.num_feats = 3703
args.num_classes = 6
args.N_nodes = 3327
args.dropout = 0.6
args.weight_decay = 5e-4
args.patience = 100
args.dim_hidden = 256
args.activation = 'relu'
args.res_alpha = 0.2
elif args.dataset == 'ogbn-arxiv':
args.num_feats = 128
args.num_classes = 40
args.N_nodes = 169343
args.dropout = 0.1
args.weight_decay = 0.
args.patience = 200
args.dim_hidden = 256
# ==============================================
# ========== below are other datasets ==========
elif args.dataset == 'chameleon':
args.num_feats = 128
args.num_classes = 6
args.N_nodes = 2277
args.dropout = 0.5
args.weight_decay = 5e-4
args.dim_hidden = 256
args.activation = 'relu'
elif args.dataset == 'squirrel':
args.num_feats = 128
args.num_classes = 5
args.N_nodes = 5201
args.dropout = 0.5
args.weight_decay = 5e-4
args.dim_hidden = 256
args.activation = 'relu'
elif args.dataset == 'TEXAS':
args.patience = 100
args.dim_hidden = 256
args.activation = 'relu'
args.num_feats = 1703
args.num_classes = 5
args.dropout = 0.6
args.weight_decay = 5e-4
args.res_alpha = 0.9
args.N_nodes = 183
elif args.dataset == 'WISCONSIN':
args.patience = 100
args.dim_hidden = 256
args.activation = 'relu'
args.num_feats = 1703
args.num_classes = 5
args.dropout = 0.6
args.weight_decay = 5e-4
args.res_alpha = 0.9
args.N_nodes = 251
elif args.dataset == 'CORNELL':
args.patience = 100
args.dim_hidden = 256
args.activation = 'relu'
args.num_feats = 1703
args.num_classes = 5
args.dropout = 0.
args.weight_decay = 5e-4
args.res_alpha = 0.9
args.N_nodes = 183
elif args.dataset == 'ACTOR':
args.patience = 100
args.dim_hidden = 256
args.activation = 'relu'
args.N_nodes = 7600
args.num_feats = 932
args.num_classes = 5
args.dropout = 0.
args.weight_decay = 5e-4
args.res_alpha = 0.9
return args
def best_alpha_or_agg(args):
idx_1 = {'Citeseer': 0, 'Pubmed': 1, 'ogbn-arxiv': 2}
idx_2 = {'GCN': 0, 'SGC': 1}
idx_3 = {2: 0, 16: 1, 32: 2}
idx_4 = {'Residual': 0, 'Initial': 1, 'Dense': 0, 'Jumping': 1}
alpha_dict = {0: 0.1, 1: 0.2, 2: 0.4, 3: 0.6, 4: 0.8}
agg_dict = {0: 'concat', 1: 'maxpool', 2: 'attention'}
if args.type_trick in ['Residual', 'Initial']:
arr = np.load('res_init.npy')
dltn = arr[..., 1] * 100
tdln = dltn.transpose(1, 0, 2, 3, 4)
alpha_matrix = np.argmax(tdln, axis=-1)
idx = alpha_matrix[idx_1[args.dataset], idx_2[args.type_model], idx_3[args.num_layers], idx_4[args.type_trick]]
return alpha_dict[idx], args.layer_agg
elif args.type_trick in ['Jumping', 'Dense']:
arr = np.load('dense_jumping.npy')
dltn = arr[..., 1] * 100
tdln = dltn.transpose(1, 0, 2, 3, 4)
alpha_matrix = np.argmax(tdln, axis=-1)
idx = alpha_matrix[idx_1[args.dataset], idx_2[args.type_model], idx_3[args.num_layers], idx_4[args.type_trick]]
return args.res_alpha, agg_dict[idx]
else:
return args.res_alpha, args.layer_agg
def bestGPU(gpu_verbose=False, **w):
import GPUtil
import numpy as np
Gpus = GPUtil.getGPUs()
Ngpu = 4
mems, loads = [], []
for ig, gpu in enumerate(Gpus):
memUtil = gpu.memoryUtil * 100
load = gpu.load * 100
mems.append(memUtil)
loads.append(load)
if gpu_verbose: print(f'gpu-{ig}: Memory: {memUtil:.2f}% | load: {load:.2f}% ')
bestMem = np.argmin(mems)
bestLoad = np.argmin(loads)
best = bestMem
if gpu_verbose: print(f'////// Will Use GPU - {best} //////')
return int(best)
def set_labprop_configs(args):
class C: pass
args.preStep = C()
args.lpStep = C()
args.midStep = C()
args.lp_has_prep = 1
args.preStep.num_propagations = 10
args.preStep.p = 1
args.preStep.alpha = 0.5
args.preStep.pre_methods = 'diffusion+spectral' # options: sgc , diffusion , spectral , community
args.midStep.model = ['mlp', 'linear', 'plain', 'gat'][0]
args.midStep.hidden_channels = 256
args.midStep.num_layers = 3
if args.LP__which_corr_and_DAD == '':
args.lpStep.A = 'DAD'
else:
args.lpStep.A = args.LP__which_corr_and_DAD
if args.LP__num_propagations == -1:
args.lpStep.num_propagations = 50
else:
args.lpStep.num_propagations = args.LP__num_propagations
if args.LP__alpha == -1.:
args.lpStep.alpha = 0.5
else:
args.lpStep.alpha = args.LP__alpha
args.lpStep.fn = [ 'double_correlation_fixed', # 'lpStep.fn' ONLY apply to 'with MLP' case; not applicable to LP-only case.
'double_correlation_autoscale',
'only_outcome_correlation',
][1]
args.lpStep.A1 = 'DA'
args.lpStep.A2 = 'AD'
args.lpStep.alpha1 = 0.9791632871592579
args.lpStep.alpha2 = 0.7564990804200602
args.lpStep.num_propagations1 = 50
args.lpStep.num_propagations2 = 50
args.lpStep.lp_force_on_cpu = True # fixed due to hard coding in C&S. please never change this.
args.lpStep.no_prep = 1
# if the above 'lpStep.no_prep' is set to 1, it means the 'LP-only' case. what will happen:
# there will be no preprocessing (self.preStep);
# no MLP (self.midStep);
# the node features are never considered;
# it will only take the label-propagation, with initialization of zero vectors at test nodes, and true labels at train nodes.
def force_set_to_best_config(args):
print('-'*30,'\n\n\n Now reseting configs !!! \n\n\n','-'*30)
d2i = {"Cora":0, "Citeseer":1, "Pubmed":2, "ogbn-arxiv":3, "chameleon":4, "ACTOR":5, "squirrel":6, "WISCONSIN":7, "CORNELL":8, "TEXAS":9,}
if args.dataset not in d2i.keys():
return
if args.train_which in ['SEMLP', 'StudentBaseMLP', 'TeacherGNN']:
args.best_config_performance = [86.9639468690702, 72.44, 75.96000000000001, 71.5367364154476, 68.50877192982458, 31.947368421052637, 59.78866474543709, 65.09803921568627, 61.08108108108108, 81.62162162162163]
TeacherGNN_arr1=(2, 4, 8, 16, 64)
TeacherGNN_arr2=('NoRes', 'Initial', 'Dense', 'Residual')
TeacherGNN_arr3=('NoNorm', 'GroupNorm', 'BatchNorm', 'PairNorm', 'NodeNorm')
best_config_TeacherGNN = np.array([[0, 0, 4], [0, 0, 1], [4, 1, 2], [2, 1, 2], [1, 1, 3], [0, 0, 2], [0, 1, 4], [1, 3, 0], [2, 3, 3], [2, 3, 1]])
whichcf = best_config_TeacherGNN[d2i[args.dataset]]
x1 = TeacherGNN_arr1[whichcf[0]]
x2 = TeacherGNN_arr2[whichcf[1]]
x3 = TeacherGNN_arr3[whichcf[2]]
args.type_trick = x2+x3
if args.train_which in ['SEMLP', 'StudentBaseMLP']:
arr1=("2&1", "2&4", "2&16", "2&32", "4&2", "4&8")
arr2=(128, 256)
arr3=('torch.optim.Adam&0.001', 'torch.optim.Adam&0.005', 'torch.optim.Adam&0.02', 'torch.optim.SGD&0.005')
best_config = np.array([[0, 1, 0], [0, 0, 0], [1, 0, 3], [1, 1, 0], [2, 0, 0], [0, 1, 2], [2, 1, 2], [0, 1, 0], [0, 1, 3], [0, 0, 2]])
whichcf = best_config[d2i[args.dataset]]
x1 = arr1[whichcf[0]]
x2 = arr2[whichcf[1]]
x3 = arr3[whichcf[2]]
args.studentMLP__skip_conn_T_and_res_blks=x1
args.StudentMLP__dim_model=x2
args.studentMLP__opt_lr='torch.optim.Adam&0.005'
return
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def unify_mlps(args):
# This function is an auxiliary function for batch training: it reset the MLP type methods' coefficient.
args.studentMLP__skip_conn_T_and_res_blks = '2&2'
args.StudentMLP__dim_model = 128
args.studentMLP__opt_lr = 'torch.optim.Adam&0.005'
args.SEMLP__include_part1out = 1
if args.train_which == 'SEMLP':
args.SEMLP_topK_2_replace = 3
elif args.train_which == 'GraphMLP':
args.graphMLP_reg = 10
args.graphMLP_tau = 1
args.graphMLP_r = 3
elif args.train_which in 'SEMLP_MLP':
args.SEMLP_topK_2_replace = -99
args.train_which = 'SEMLP'
elif args.train_which == 'GraphMLP_MLP':
args.graphMLP_reg = 0
args.train_which = 'GraphMLP'