-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRijndaelEnhanced.cs
775 lines (708 loc) · 34.1 KB
/
RijndaelEnhanced.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
using System;
using System.IO;
using System.Text;
using System.Security.Cryptography;
namespace Utility.Encryption
{
/// <summary>
/// This class uses a symmetric key algorithm (Rijndael/AES) to encrypt and
/// decrypt data. As long as it is initialized with the same constructor
/// parameters, the class will use the same key. Before performing encryption,
/// the class can prepend random bytes to plain text and generate different
/// encrypted values from the same plain text, encryption key, initialization
/// vector, and other parameters. This class is thread-safe.
/// </summary>
/// <remarks>
/// Be careful when performing encryption and decryption. There is a bug
/// ("feature"?) in .NET Framework, which causes corruption of encryptor/
/// decryptor if a cryptographic exception occurs during encryption/
/// decryption operation. To correct the problem, re-initialize the class
/// instance when a cryptographic exception occurs.
/// </remarks>
public class RijndaelEnhanced
{
#region Private members
// If hashing algorithm is not specified, use SHA-1.
private static string DEFAULT_HASH_ALGORITHM = "SHA1";
// If key size is not specified, use the longest 256-bit key.
private static int DEFAULT_KEY_SIZE = 256;
// Do not allow salt to be longer than 255 bytes, because we have only
// 1 byte to store its length.
private static int MAX_ALLOWED_SALT_LEN = 255;
// Do not allow salt to be smaller than 4 bytes, because we use the first
// 4 bytes of salt to store its length.
private static int MIN_ALLOWED_SALT_LEN = 4;
// Random salt value will be between 4 and 8 bytes long.
private static int DEFAULT_MIN_SALT_LEN = MIN_ALLOWED_SALT_LEN;
private static int DEFAULT_MAX_SALT_LEN = 8;
// Use these members to save min and max salt lengths.
private int minSaltLen = -1;
private int maxSaltLen = -1;
// These members will be used to perform encryption and decryption.
private ICryptoTransform encryptor = null;
private ICryptoTransform decryptor = null;
#endregion
#region Constructors
/// <summary>
/// Use this constructor if you are planning to perform encryption/
/// decryption with 256-bit key, derived using 1 password iteration,
/// hashing without salt, no initialization vector, electronic codebook
/// (ECB) mode, SHA-1 hashing algorithm, and 4-to-8 byte long salt.
/// </summary>
/// <param name="passPhrase">
/// Passphrase from which a pseudo-random password will be derived.
/// The derived password will be used to generate the encryption key.
/// Passphrase can be any string. In this example we assume that the
/// passphrase is an ASCII string. Passphrase value must be kept in
/// secret.
/// </param>
/// <remarks>
/// This constructor is not recommended because it does not use
/// initialization vector and uses the ECB cipher mode, which is less
/// secure than the CBC mode.
/// </remarks>
public RijndaelEnhanced(string passPhrase) :
this(passPhrase, null)
{
}
/// <summary>
/// Use this constructor if you are planning to perform encryption/
/// decryption with 256-bit key, derived using 1 password iteration,
/// hashing without salt, cipher block chaining (CBC) mode, SHA-1
/// hashing algorithm, and 4-to-8 byte long salt.
/// </summary>
/// <param name="passPhrase">
/// Passphrase from which a pseudo-random password will be derived.
/// The derived password will be used to generate the encryption key.
/// Passphrase can be any string. In this example we assume that the
/// passphrase is an ASCII string. Passphrase value must be kept in
/// secret.
/// </param>
/// <param name="initVector">
/// Initialization vector (IV). This value is required to encrypt the
/// first block of plaintext data. For RijndaelManaged class IV must be
/// exactly 16 ASCII characters long. IV value does not have to be kept
/// in secret.
/// </param>
public RijndaelEnhanced(string passPhrase,
string initVector) :
this(passPhrase, initVector, -1)
{
}
/// <summary>
/// Use this constructor if you are planning to perform encryption/
/// decryption with 256-bit key, derived using 1 password iteration,
/// hashing without salt, cipher block chaining (CBC) mode, SHA-1
/// hashing algorithm, and 0-to-8 byte long salt.
/// </summary>
/// <param name="passPhrase">
/// Passphrase from which a pseudo-random password will be derived.
/// The derived password will be used to generate the encryption key
/// Passphrase can be any string. In this example we assume that the
/// passphrase is an ASCII string. Passphrase value must be kept in
/// secret.
/// </param>
/// <param name="initVector">
/// Initialization vector (IV). This value is required to encrypt the
/// first block of plaintext data. For RijndaelManaged class IV must be
/// exactly 16 ASCII characters long. IV value does not have to be kept
/// in secret.
/// </param>
/// <param name="minSaltLen">
/// Min size (in bytes) of randomly generated salt which will be added at
/// the beginning of plain text before encryption is performed. When this
/// value is less than 4, the default min value will be used (currently 4
/// bytes).
/// </param>
public RijndaelEnhanced(string passPhrase,
string initVector,
int minSaltLen) :
this(passPhrase, initVector, minSaltLen, -1)
{
}
/// <summary>
/// Use this constructor if you are planning to perform encryption/
/// decryption with 256-bit key, derived using 1 password iteration,
/// hashing without salt, cipher block chaining (CBC) mode, SHA-1
/// hashing algorithm. Use the minSaltLen and maxSaltLen parameters to
/// specify the size of randomly generated salt.
/// </summary>
/// <param name="passPhrase">
/// Passphrase from which a pseudo-random password will be derived.
/// The derived password will be used to generate the encryption key.
/// Passphrase can be any string. In this example we assume that the
/// passphrase is an ASCII string. Passphrase value must be kept in
/// secret.
/// </param>
/// <param name="initVector">
/// Initialization vector (IV). This value is required to encrypt the
/// first block of plaintext data. For RijndaelManaged class IV must be
/// exactly 16 ASCII characters long. IV value does not have to be kept
/// in secret.
/// </param>
/// <param name="minSaltLen">
/// Min size (in bytes) of randomly generated salt which will be added at
/// the beginning of plain text before encryption is performed. When this
/// value is less than 4, the default min value will be used (currently 4
/// bytes).
/// </param>
/// <param name="maxSaltLen">
/// Max size (in bytes) of randomly generated salt which will be added at
/// the beginning of plain text before encryption is performed. When this
/// value is negative or greater than 255, the default max value will be
/// used (currently 8 bytes). If max value is 0 (zero) or if it is smaller
/// than the specified min value (which can be adjusted to default value),
/// salt will not be used and plain text value will be encrypted as is.
/// In this case, salt will not be processed during decryption either.
/// </param>
public RijndaelEnhanced(string passPhrase,
string initVector,
int minSaltLen,
int maxSaltLen) :
this(passPhrase, initVector, minSaltLen, maxSaltLen, -1)
{
}
/// <summary>
/// Use this constructor if you are planning to perform encryption/
/// decryption using the key derived from 1 password iteration,
/// hashing without salt, cipher block chaining (CBC) mode, and
/// SHA-1 hashing algorithm.
/// </summary>
/// <param name="passPhrase">
/// Passphrase from which a pseudo-random password will be derived.
/// The derived password will be used to generate the encryption key.
/// Passphrase can be any string. In this example we assume that the
/// passphrase is an ASCII string. Passphrase value must be kept in
/// secret.
/// </param>
/// <param name="initVector">
/// Initialization vector (IV). This value is required to encrypt the
/// first block of plaintext data. For RijndaelManaged class IV must be
/// exactly 16 ASCII characters long. IV value does not have to be kept
/// in secret.
/// </param>
/// <param name="minSaltLen">
/// Min size (in bytes) of randomly generated salt which will be added at
/// the beginning of plain text before encryption is performed. When this
/// value is less than 4, the default min value will be used (currently 4
/// bytes).
/// </param>
/// <param name="maxSaltLen">
/// Max size (in bytes) of randomly generated salt which will be added at
/// the beginning of plain text before encryption is performed. When this
/// value is negative or greater than 255, the default max value will be
/// used (currently 8 bytes). If max value is 0 (zero) or if it is smaller
/// than the specified min value (which can be adjusted to default value),
/// salt will not be used and plain text value will be encrypted as is.
/// In this case, salt will not be processed during decryption either.
/// </param>
/// <param name="keySize">
/// Size of symmetric key (in bits): 128, 192, or 256.
/// </param>
public RijndaelEnhanced(string passPhrase,
string initVector,
int minSaltLen,
int maxSaltLen,
int keySize) :
this(passPhrase, initVector, minSaltLen, maxSaltLen, keySize, null)
{
}
/// <summary>
/// Use this constructor if you are planning to perform encryption/
/// decryption using the key derived from 1 password iteration, hashing
/// without salt, and cipher block chaining (CBC) mode.
/// </summary>
/// <param name="passPhrase">
/// Passphrase from which a pseudo-random password will be derived.
/// The derived password will be used to generate the encryption key.
/// Passphrase can be any string. In this example we assume that the
/// passphrase is an ASCII string. Passphrase value must be kept in
/// secret.
/// </param>
/// <param name="initVector">
/// Initialization vector (IV). This value is required to encrypt the
/// first block of plaintext data. For RijndaelManaged class IV must be
/// exactly 16 ASCII characters long. IV value does not have to be kept
/// in secret.
/// </param>
/// <param name="minSaltLen">
/// Min size (in bytes) of randomly generated salt which will be added at
/// the beginning of plain text before encryption is performed. When this
/// value is less than 4, the default min value will be used (currently 4
/// bytes).
/// </param>
/// <param name="maxSaltLen">
/// Max size (in bytes) of randomly generated salt which will be added at
/// the beginning of plain text before encryption is performed. When this
/// value is negative or greater than 255, the default max value will be
/// used (currently 8 bytes). If max value is 0 (zero) or if it is smaller
/// than the specified min value (which can be adjusted to default value),
/// salt will not be used and plain text value will be encrypted as is.
/// In this case, salt will not be processed during decryption either.
/// </param>
/// <param name="keySize">
/// Size of symmetric key (in bits): 128, 192, or 256.
/// </param>
/// <param name="hashAlgorithm">
/// Hashing algorithm: "MD5" or "SHA1". SHA1 is recommended.
/// </param>
public RijndaelEnhanced(string passPhrase,
string initVector,
int minSaltLen,
int maxSaltLen,
int keySize,
string hashAlgorithm) :
this(passPhrase, initVector, minSaltLen, maxSaltLen, keySize,
hashAlgorithm, null)
{
}
/// <summary>
/// Use this constructor if you are planning to perform encryption/
/// decryption using the key derived from 1 password iteration, and
/// cipher block chaining (CBC) mode.
/// </summary>
/// <param name="passPhrase">
/// Passphrase from which a pseudo-random password will be derived.
/// The derived password will be used to generate the encryption key.
/// Passphrase can be any string. In this example we assume that the
/// passphrase is an ASCII string. Passphrase value must be kept in
/// secret.
/// </param>
/// <param name="initVector">
/// Initialization vector (IV). This value is required to encrypt the
/// first block of plaintext data. For RijndaelManaged class IV must be
/// exactly 16 ASCII characters long. IV value does not have to be kept
/// in secret.
/// </param>
/// <param name="minSaltLen">
/// Min size (in bytes) of randomly generated salt which will be added at
/// the beginning of plain text before encryption is performed. When this
/// value is less than 4, the default min value will be used (currently 4
/// bytes).
/// </param>
/// <param name="maxSaltLen">
/// Max size (in bytes) of randomly generated salt which will be added at
/// the beginning of plain text before encryption is performed. When this
/// value is negative or greater than 255, the default max value will be
/// used (currently 8 bytes). If max value is 0 (zero) or if it is smaller
/// than the specified min value (which can be adjusted to default value),
/// salt will not be used and plain text value will be encrypted as is.
/// In this case, salt will not be processed during decryption either.
/// </param>
/// <param name="keySize">
/// Size of symmetric key (in bits): 128, 192, or 256.
/// </param>
/// <param name="hashAlgorithm">
/// Hashing algorithm: "MD5" or "SHA1". SHA1 is recommended.
/// </param>
/// <param name="saltValue">
/// Salt value used for password hashing during key generation. This is
/// not the same as the salt we will use during encryption. This parameter
/// can be any string.
/// </param>
public RijndaelEnhanced(string passPhrase,
string initVector,
int minSaltLen,
int maxSaltLen,
int keySize,
string hashAlgorithm,
string saltValue) :
this(passPhrase, initVector, minSaltLen, maxSaltLen, keySize,
hashAlgorithm, saltValue, 1)
{
}
/// <summary>
/// Use this constructor if you are planning to perform encryption/
/// decryption with the key derived from the explicitly specified
/// parameters.
/// </summary>
/// <param name="passPhrase">
/// Passphrase from which a pseudo-random password will be derived.
/// The derived password will be used to generate the encryption key
/// Passphrase can be any string. In this example we assume that the
/// passphrase is an ASCII string. Passphrase value must be kept in
/// secret.
/// </param>
/// <param name="initVector">
/// Initialization vector (IV). This value is required to encrypt the
/// first block of plaintext data. For RijndaelManaged class IV must be
/// exactly 16 ASCII characters long. IV value does not have to be kept
/// in secret.
/// </param>
/// <param name="minSaltLen">
/// Min size (in bytes) of randomly generated salt which will be added at
/// the beginning of plain text before encryption is performed. When this
/// value is less than 4, the default min value will be used (currently 4
/// bytes).
/// </param>
/// <param name="maxSaltLen">
/// Max size (in bytes) of randomly generated salt which will be added at
/// the beginning of plain text before encryption is performed. When this
/// value is negative or greater than 255, the default max value will be
/// used (currently 8 bytes). If max value is 0 (zero) or if it is smaller
/// than the specified min value (which can be adjusted to default value),
/// salt will not be used and plain text value will be encrypted as is.
/// In this case, salt will not be processed during decryption either.
/// </param>
/// <param name="keySize">
/// Size of symmetric key (in bits): 128, 192, or 256.
/// </param>
/// <param name="hashAlgorithm">
/// Hashing algorithm: "MD5" or "SHA1". SHA1 is recommended.
/// </param>
/// <param name="saltValue">
/// Salt value used for password hashing during key generation. This is
/// not the same as the salt we will use during encryption. This parameter
/// can be any string.
/// </param>
/// <param name="passwordIterations">
/// Number of iterations used to hash password. More iterations are
/// considered more secure but may take longer.
/// </param>
public RijndaelEnhanced(string passPhrase,
string initVector,
int minSaltLen,
int maxSaltLen,
int keySize,
string hashAlgorithm,
string saltValue,
int passwordIterations)
{
// Save min salt length; set it to default if invalid value is passed.
if (minSaltLen < MIN_ALLOWED_SALT_LEN)
this.minSaltLen = DEFAULT_MIN_SALT_LEN;
else
this.minSaltLen = minSaltLen;
// Save max salt length; set it to default if invalid value is passed.
if (maxSaltLen < 0 || maxSaltLen > MAX_ALLOWED_SALT_LEN)
this.maxSaltLen = DEFAULT_MAX_SALT_LEN;
else
this.maxSaltLen = maxSaltLen;
// Set the size of cryptographic key.
if (keySize <= 0)
keySize = DEFAULT_KEY_SIZE;
// Set the name of algorithm. Make sure it is in UPPER CASE and does
// not use dashes, e.g. change "sha-1" to "SHA1".
if (hashAlgorithm == null)
hashAlgorithm = DEFAULT_HASH_ALGORITHM;
else
hashAlgorithm = hashAlgorithm.ToUpper().Replace("-", "");
// Initialization vector converted to a byte array.
byte[] initVectorBytes = null;
// Salt used for password hashing (to generate the key, not during
// encryption) converted to a byte array.
byte[] saltValueBytes = null;
// Get bytes of initialization vector.
if (initVector == null)
initVectorBytes = new byte[0];
else
initVectorBytes = Encoding.ASCII.GetBytes(initVector);
// Get bytes of salt (used in hashing).
if (saltValue == null)
saltValueBytes = new byte[0];
else
saltValueBytes = Encoding.ASCII.GetBytes(saltValue);
// Generate password, which will be used to derive the key.
PasswordDeriveBytes password = new PasswordDeriveBytes(
passPhrase,
saltValueBytes,
hashAlgorithm,
passwordIterations);
// Convert key to a byte array adjusting the size from bits to bytes.
byte[] keyBytes = password.GetBytes(keySize / 8);
// Initialize Rijndael key object.
RijndaelManaged symmetricKey = new RijndaelManaged();
// If we do not have initialization vector, we cannot use the CBC mode.
// The only alternative is the ECB mode (which is not as good).
if (initVectorBytes.Length == 0)
symmetricKey.Mode = CipherMode.ECB;
else
symmetricKey.Mode = CipherMode.CBC;
// Create encryptor and decryptor, which we will use for cryptographic
// operations.
encryptor = symmetricKey.CreateEncryptor(keyBytes, initVectorBytes);
decryptor = symmetricKey.CreateDecryptor(keyBytes, initVectorBytes);
}
#endregion
#region Encryption routines
/// <summary>
/// Encrypts a string value generating a base64-encoded string.
/// </summary>
/// <param name="plainText">
/// Plain text string to be encrypted.
/// </param>
/// <returns>
/// Cipher text formatted as a base64-encoded string.
/// </returns>
public string Encrypt(string plainText)
{
return Encrypt(Encoding.UTF8.GetBytes(plainText));
}
/// <summary>
/// Encrypts a byte array generating a base64-encoded string.
/// </summary>
/// <param name="plainTextBytes">
/// Plain text bytes to be encrypted.
/// </param>
/// <returns>
/// Cipher text formatted as a base64-encoded string.
/// </returns>
public string Encrypt(byte[] plainTextBytes)
{
return Convert.ToBase64String(EncryptToBytes(plainTextBytes));
}
/// <summary>
/// Encrypts a string value generating a byte array of cipher text.
/// </summary>
/// <param name="plainText">
/// Plain text string to be encrypted.
/// </param>
/// <returns>
/// Cipher text formatted as a byte array.
/// </returns>
public byte[] EncryptToBytes(string plainText)
{
return EncryptToBytes(Encoding.UTF8.GetBytes(plainText));
}
/// <summary>
/// Encrypts a byte array generating a byte array of cipher text.
/// </summary>
/// <param name="plainTextBytes">
/// Plain text bytes to be encrypted.
/// </param>
/// <returns>
/// Cipher text formatted as a byte array.
/// </returns>
public byte[] EncryptToBytes(byte[] plainTextBytes)
{
// Add salt at the beginning of the plain text bytes (if needed).
byte[] plainTextBytesWithSalt = AddSalt(plainTextBytes);
// Encryption will be performed using memory stream.
MemoryStream memoryStream = new MemoryStream();
// Let's make cryptographic operations thread-safe.
lock (this)
{
// To perform encryption, we must use the Write mode.
CryptoStream cryptoStream = new CryptoStream(
memoryStream,
encryptor,
CryptoStreamMode.Write);
// Start encrypting data.
cryptoStream.Write(plainTextBytesWithSalt,
0,
plainTextBytesWithSalt.Length);
// Finish the encryption operation.
cryptoStream.FlushFinalBlock();
// Move encrypted data from memory into a byte array.
byte[] cipherTextBytes = memoryStream.ToArray();
// Close memory streams.
memoryStream.Close();
cryptoStream.Close();
// Return encrypted data.
return cipherTextBytes;
}
}
#endregion
#region Decryption routines
/// <summary>
/// Decrypts a base64-encoded cipher text value generating a string result.
/// </summary>
/// <param name="cipherText">
/// Base64-encoded cipher text string to be decrypted.
/// </param>
/// <returns>
/// Decrypted string value.
/// </returns>
public string Decrypt(string cipherText)
{
return Decrypt(Convert.FromBase64String(cipherText));
}
/// <summary>
/// Decrypts a byte array containing cipher text value and generates a
/// string result.
/// </summary>
/// <param name="cipherTextBytes">
/// Byte array containing encrypted data.
/// </param>
/// <returns>
/// Decrypted string value.
/// </returns>
public string Decrypt(byte[] cipherTextBytes)
{
return Encoding.UTF8.GetString(DecryptToBytes(cipherTextBytes));
}
/// <summary>
/// Decrypts a base64-encoded cipher text value and generates a byte array
/// of plain text data.
/// </summary>
/// <param name="cipherText">
/// Base64-encoded cipher text string to be decrypted.
/// </param>
/// <returns>
/// Byte array containing decrypted value.
/// </returns>
public byte[] DecryptToBytes(string cipherText)
{
return DecryptToBytes(Convert.FromBase64String(cipherText));
}
/// <summary>
/// Decrypts a base64-encoded cipher text value and generates a byte array
/// of plain text data.
/// </summary>
/// <param name="cipherTextBytes">
/// Byte array containing encrypted data.
/// </param>
/// <returns>
/// Byte array containing decrypted value.
/// </returns>
public byte[] DecryptToBytes(byte[] cipherTextBytes)
{
byte[] decryptedBytes = null;
byte[] plainTextBytes = null;
int decryptedByteCount = 0;
int saltLen = 0;
MemoryStream memoryStream = new MemoryStream(cipherTextBytes);
// Since we do not know how big decrypted value will be, use the same
// size as cipher text. Cipher text is always longer than plain text
// (in block cipher encryption), so we will just use the number of
// decrypted data byte after we know how big it is.
decryptedBytes = new byte[cipherTextBytes.Length];
// Let's make cryptographic operations thread-safe.
lock (this)
{
// To perform decryption, we must use the Read mode.
CryptoStream cryptoStream = new CryptoStream(
memoryStream,
decryptor,
CryptoStreamMode.Read);
// Decrypting data and get the count of plain text bytes.
decryptedByteCount = cryptoStream.Read(decryptedBytes,
0,
decryptedBytes.Length);
// Release memory.
memoryStream.Close();
cryptoStream.Close();
}
// If we are using salt, get its length from the first 4 bytes of plain
// text data.
if (maxSaltLen > 0 && maxSaltLen >= minSaltLen)
{
saltLen = (decryptedBytes[0] & 0x03) |
(decryptedBytes[1] & 0x0c) |
(decryptedBytes[2] & 0x30) |
(decryptedBytes[3] & 0xc0);
}
// Allocate the byte array to hold the original plain text (without salt).
plainTextBytes = new byte[decryptedByteCount - saltLen];
// Copy original plain text discarding the salt value if needed.
Array.Copy(decryptedBytes, saltLen, plainTextBytes,
0, decryptedByteCount - saltLen);
// Return original plain text value.
return plainTextBytes;
}
#endregion
#region Helper functions
/// <summary>
/// Adds an array of randomly generated bytes at the beginning of the
/// array holding original plain text value.
/// </summary>
/// <param name="plainTextBytes">
/// Byte array containing original plain text value.
/// </param>
/// <returns>
/// Either original array of plain text bytes (if salt is not used) or a
/// modified array containing a randomly generated salt added at the
/// beginning of the plain text bytes.
/// </returns>
private byte[] AddSalt(byte[] plainTextBytes)
{
// The max salt value of 0 (zero) indicates that we should not use
// salt. Also do not use salt if the max salt value is smaller than
// the min value.
if (maxSaltLen == 0 || maxSaltLen < minSaltLen)
return plainTextBytes;
// Generate the salt.
byte[] saltBytes = GenerateSalt();
// Allocate array which will hold salt and plain text bytes.
byte[] plainTextBytesWithSalt = new byte[plainTextBytes.Length +
saltBytes.Length];
// First, copy salt bytes.
Array.Copy(saltBytes, plainTextBytesWithSalt, saltBytes.Length);
// Append plain text bytes to the salt value.
Array.Copy(plainTextBytes, 0,
plainTextBytesWithSalt, saltBytes.Length,
plainTextBytes.Length);
return plainTextBytesWithSalt;
}
/// <summary>
/// Generates an array holding cryptographically strong bytes.
/// </summary>
/// <returns>
/// Array of randomly generated bytes.
/// </returns>
/// <remarks>
/// Salt size will be defined at random or exactly as specified by the
/// minSlatLen and maxSaltLen parameters passed to the object constructor.
/// The first four bytes of the salt array will contain the salt length
/// split into four two-bit pieces.
/// </remarks>
private byte[] GenerateSalt()
{
// We don't have the length, yet.
int saltLen = 0;
// If min and max salt values are the same, it should not be random.
if (minSaltLen == maxSaltLen)
saltLen = minSaltLen;
// Use random number generator to calculate salt length.
else
saltLen = GenerateRandomNumber(minSaltLen, maxSaltLen);
// Allocate byte array to hold our salt.
byte[] salt = new byte[saltLen];
// Populate salt with cryptographically strong bytes.
RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();
rng.GetNonZeroBytes(salt);
// Split salt length (always one byte) into four two-bit pieces and
// store these pieces in the first four bytes of the salt array.
salt[0] = (byte)((salt[0] & 0xfc) | (saltLen & 0x03));
salt[1] = (byte)((salt[1] & 0xf3) | (saltLen & 0x0c));
salt[2] = (byte)((salt[2] & 0xcf) | (saltLen & 0x30));
salt[3] = (byte)((salt[3] & 0x3f) | (saltLen & 0xc0));
return salt;
}
/// <summary>
/// Generates random integer.
/// </summary>
/// <param name="minValue">
/// Min value (inclusive).
/// </param>
/// <param name="maxValue">
/// Max value (inclusive).
/// </param>
/// <returns>
/// Random integer value between the min and max values (inclusive).
/// </returns>
/// <remarks>
/// This methods overcomes the limitations of .NET Framework's Random
/// class, which - when initialized multiple times within a very short
/// period of time - can generate the same "random" number.
/// </remarks>
private int GenerateRandomNumber(int minValue, int maxValue)
{
// We will make up an integer seed from 4 bytes of this array.
byte[] randomBytes = new byte[4];
// Generate 4 random bytes.
RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();
rng.GetBytes(randomBytes);
// Convert four random bytes into a positive integer value.
int seed = ((randomBytes[0] & 0x7f) << 24) |
(randomBytes[1] << 16) |
(randomBytes[2] << 8) |
(randomBytes[3]);
// Now, this looks more like real randomization.
Random random = new Random(seed);
// Calculate a random number.
return random.Next(minValue, maxValue + 1);
}
#endregion
}
}