-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsunglasses_rec.py
131 lines (99 loc) · 3.59 KB
/
sunglasses_rec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 16 10:21:45 2023
@author: adina
"""
import os
import pandas as pd
import tensorflow as tf
from keras.preprocessing.image import ImageDataGenerator
from PIL import Image
import numpy as np
from keras.preprocessing import image
def convert_pgm_to_png(input_dir):
data = []
for directory in input_dir:
for root, dirs, files in os.walk(directory):
for file in files:
if file.endswith(".pgm"):
pgm_path = os.path.join(root, file)
img = Image.open(pgm_path)
png_filename = os.path.splitext(file)[0] + ".png"
png_path = os.path.join(root, png_filename)
img.save(png_path, "PNG")
if "sunglasses" in file.lower():
has_sunglasses = '1' # Image has sunglasses
else:
has_sunglasses = '0'
data.append({
'Filename': png_filename,
'Path': png_path,
'HasSunglasses': has_sunglasses
})
df = pd.DataFrame(data)
return df
return
# preproccesing the train set
directories_for_train = ['faces/an2i' , 'faces/at33' , 'faces/boland' , 'faces/bpm']
dataset_train = convert_pgm_to_png(directories_for_train)
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True
)
training_set = train_datagen.flow_from_dataframe(
dataframe=dataset_train,
x_col='Path',
y_col='HasSunglasses',
target_size=(64, 64),
batch_size=32,
class_mode='binary'
)
# preproccesing the test set
directories_for_test = ['faces/ch4f' , 'faces/cheyer' , 'faces/choon' , 'faces/danieln']
dataset_test = convert_pgm_to_png(directories_for_test)
test_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True
)
test_set = test_datagen.flow_from_dataframe(
dataframe=dataset_test,
x_col='Path',
y_col='HasSunglasses',
target_size=(64, 64),
batch_size=32,
class_mode='binary'
)
# intializing the cnn
cnn = tf.keras.models.Sequential()
# Step 1 - Convolution
cnn.add(tf.keras.layers.Conv2D(filters=32, kernel_size=3, activation='relu', input_shape=[64, 64, 3]))
# Step 2 - Pooling
cnn.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2))
# Adding a second convolutional layer
cnn.add(tf.keras.layers.Conv2D(filters=32, kernel_size=3, activation='relu'))
cnn.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2))
# Step 3 - Flattening
cnn.add(tf.keras.layers.Flatten())
# Step 4 - Full Connection
cnn.add(tf.keras.layers.Dense(units=128, activation='relu'))
# Step 5 - Output Layer
cnn.add(tf.keras.layers.Dense(units=1, activation='sigmoid'))
# Compiling the CNN
cnn.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
# Training the CNN on the Training set and evaluating it on the Test set
cnn.fit(x=training_set, validation_data=test_set, epochs=25)
# prediction
test_image = image.load_img('image_67184129.JPG', target_size = (64, 64))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis = 0)
result = cnn.predict(test_image)
training_set.class_indices
if result[0][0] == 1:
prediction = 'have sunglasses!'
else:
prediction = 'not have sunglasses!'
print(prediction)