This document provides examples training, evaluating and predicting with constituency parsers. All files passed through input arguments to load data are PTB bracket files (see docs/sample.ptb for an example).
Identifier | Parser | Paper | Arguments |
---|---|---|---|
con-idx |
Absolute and relative indexing | Gómez-Rodríguez and Vilares (2018) | rel |
con-tetra |
Tetra-Tagging | Kitaev and Klein (2020) |
- Absolute indexing (Gómez-Rodríguez and Vilares, 2018 ) with XLNet (Yang et al., 2019) as encoder. Add
--rel
argument as<specific-args>
to exchange absolute for relative positions.
python3 run.py con-idx -p results/con-idx-xlnet -c configs/xlnet.ini \
train --train treebanks/ptb/train.ptb \
--dev treebanks/ptb/dev.ptb \
--test treebanks/ptb/test.ptb --num-workers 20
- Tetra-tagging (Kitaev and Klein, 2020) with XLNet (Yang et al., 2019) as encoder.
python3 run.py con-tetra -p results/con-tetra-xlnet -c configs/xlnet.ini \
train --train treebanks/ptb/train.ptb \
--dev treebanks/ptb/dev.ptb \
--test treebanks/ptb/test.ptb --num-workers 20
Evaluate now the trained parser at results/con-tetra-xlnet/parser.pt
with the same test file:
python3 run.py con-tetra -p results/con-tetra-xlnet/parser.pt eval treebanks/ptb/test.ptb --batch-size 50
Predict with the trained parser at results/con-tetra-xlnet/parser.pt
:
python3 run.py con-tetra -p results/con-tetra-xlnet/parser.pt predict \
treebanks/ptb/test.ptb results/con-tetra-xlnet/pred.ptb --batch-size 50