Skip to content

Latest commit

 

History

History
42 lines (32 loc) · 2.08 KB

con.md

File metadata and controls

42 lines (32 loc) · 2.08 KB

Constituency Parsing

This document provides examples training, evaluating and predicting with constituency parsers. All files passed through input arguments to load data are PTB bracket files (see docs/sample.ptb for an example).

Identifier Parser Paper Arguments
con-idx Absolute and relative indexing Gómez-Rodríguez and Vilares (2018) rel
con-tetra Tetra-Tagging Kitaev and Klein (2020)

Training

python3 run.py con-idx -p results/con-idx-xlnet -c configs/xlnet.ini \
    train --train treebanks/ptb/train.ptb \
    --dev treebanks/ptb/dev.ptb \
    --test treebanks/ptb/test.ptb --num-workers 20
python3 run.py con-tetra -p results/con-tetra-xlnet -c configs/xlnet.ini \
    train --train treebanks/ptb/train.ptb \
    --dev treebanks/ptb/dev.ptb \
    --test treebanks/ptb/test.ptb --num-workers 20

Evaluation

Evaluate now the trained parser at results/con-tetra-xlnet/parser.pt with the same test file:

python3 run.py con-tetra -p results/con-tetra-xlnet/parser.pt eval treebanks/ptb/test.ptb --batch-size 50

Prediction

Predict with the trained parser at results/con-tetra-xlnet/parser.pt:

python3 run.py con-tetra -p results/con-tetra-xlnet/parser.pt predict \
    treebanks/ptb/test.ptb results/con-tetra-xlnet/pred.ptb --batch-size 50