-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathapi.py
48 lines (41 loc) · 1.42 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# -*- coding: utf-8 -*-
"""
@author: anantSinghCross
"""
import flask
import json
import numpy as np
from sklearn.externals import joblib
from flask import Flask, render_template, request
from keras.models import model_from_json
app = Flask(__name__)
@app.route("/")
@app.route("/bostonindex")
def index():
return flask.render_template('bostonIndex.html')
@app.route("/predict",methods = ['POST'])
def make_predictions():
if request.method == 'POST':
a = request.form.get('crim')
b = request.form.get('zn')
c = request.form.get('indus')
d = request.form.get('chas')
e = request.form.get('nox')
f = request.form.get('rm')
g = request.form.get('age')
h = request.form.get('dis')
i = request.form.get('rad')
j = request.form.get('tax')
k = request.form.get('ptratio')
l = request.form.get('b')
m = request.form.get('lstat')
X = np.array([[a,b,c,d,e,f,g,h,i,j,k,l,m]])
pred = loaded_model.predict(X)
return flask.render_template('predictPage.html' , response = pred[0][0])
if __name__ == '__main__':
json_file = open("model.json","r")
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
loaded_model.load_weights("model.h5")
app.run(host='0.0.0.0', port=8001, debug=True)