-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_test_jigsaw_solver.py
149 lines (127 loc) · 6.1 KB
/
train_test_jigsaw_solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import argparse
import os
import numpy as np
import pandas as pd
import torch
from sklearn.model_selection import train_test_split
from torch import optim
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import DataLoader
from torch.utils.data.dataset import ConcatDataset
from torchvision.transforms import transforms
from dataset_helpers import get_train_test_file_paths_n_labels, get_inat_birds_file_paths, \
get_na_birds_file_paths
from get_dataset import GetJigsawPuzzleDataset
from resnet_file import resnet18
from train_test_helper import JigsawModelTrainTest
if __name__ == '__main__':
# Training settings
parser = argparse.ArgumentParser(description='Jigsaw Train test script')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--epochs', type=int, default=100, metavar='N',
help='number of epochs to train (default: 100)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--weight-decay', type=float, default=5e-4,
help='Weight decay constant (default: 5e-4)')
parser.add_argument('--experiment-name', type=str, default='e1_js')
parser.add_argument('--dataset-config', type=str, default='js_d1')
args = parser.parse_args()
# Data files which will get referred
permuts_file_path = 'selected_permuts.npy'
# Set device to use to gpu if available and declare model_file_path
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
par_weights_dir = 'weights/'
model_file_path = os.path.join(par_weights_dir, 'resnet_jigsaw_solver_{}_trained.pt'.format(args.experiment_name))
# Data loading and data generators set up
# Get image file paths, ids and labels from CUB-200 dataset
cub_tr_image_ids, cub_te_image_ids, cub_train_file_paths, cub_test_file_paths, cub_tr_labels, cub_te_labels = \
get_train_test_file_paths_n_labels()
# Get image file paths from INAT dataset
inat_file_paths = get_inat_birds_file_paths()
# Get image file paths from NA Birds dataset
na_file_paths = get_na_birds_file_paths()
# Add the file paths from cub, inat and na together
if args.dataset_config == 'js_d1':
all_file_paths = cub_train_file_paths
else:
all_file_paths = cub_train_file_paths + inat_file_paths + na_file_paths
# Get validation files separate
train_file_paths, val_file_paths = train_test_split(all_file_paths, test_size=0.1, shuffle=True, random_state=3)
# Compute channel means
channel_means = np.array([124.09, 127.67, 110.50]) / 256.0
# Define data transforms
data_transform = transforms.Compose([
transforms.RandomCrop((64, 64)),
transforms.ColorJitter(brightness=[0.5, 1.5]),
transforms.ToTensor(),
# transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
# Define data loaders
batch_size = args.batch_size
if args.dataset_config == 'js_d1':
train_data_loader = DataLoader(
ConcatDataset(
[GetJigsawPuzzleDataset(train_file_paths, permuts_file_path,
range_permut_indices=[st_perm_ind, st_perm_ind+9], transform=data_transform)
for st_perm_ind in range(0, 200, 10)
]
),
batch_size=batch_size, shuffle=True, num_workers=8
)
val_data_loader = DataLoader(
ConcatDataset(
[GetJigsawPuzzleDataset(val_file_paths, permuts_file_path,
range_permut_indices=[st_perm_ind, st_perm_ind + 9], transform=data_transform)
for st_perm_ind in range(0, 200, 10)
]
),
batch_size=batch_size, shuffle=True, num_workers=8
)
else:
train_data_loader = DataLoader(
GetJigsawPuzzleDataset(train_file_paths, permuts_file_path, transform=data_transform),
batch_size=batch_size, shuffle=True, num_workers=8
)
val_data_loader = DataLoader(
GetJigsawPuzzleDataset(val_file_paths, permuts_file_path, transform=data_transform),
batch_size=batch_size, shuffle=True, num_workers=8
)
# Print sample batches that would be returned by the train_data_loader
dataiter = iter(train_data_loader)
X, y = dataiter.__next__()
print (X.size())
print (y.size())
# Train required model defined above on CUB200 data
num_outputs = 200
epochs = args.epochs
lr = args.lr
weight_decay_const = args.weight_decay
# If using Resnet18
model_to_train = resnet18(num_classes=num_outputs, siamese_deg=9)
# Set device on which training is done. Plus optimizer to use.
model_to_train.to(device)
optimizer = optim.SGD(model_to_train.parameters(), lr=lr, momentum=0.9, weight_decay=weight_decay_const)
scheduler = ReduceLROnPlateau(optimizer, 'min', patience=2, verbose=True, min_lr=1e-5)
# Start training
model_train_test_obj = JigsawModelTrainTest(model_to_train, device, model_file_path)
train_losses, val_losses, train_accs, val_accs = [], [], [], []
for epoch_no in range(epochs):
train_loss, train_acc, val_loss, val_acc = model_train_test_obj.train(
optimizer, epoch_no, params_max_norm=4,
train_data_loader = train_data_loader, val_data_loader = val_data_loader
)
train_losses.append(train_loss)
val_losses.append(val_loss)
train_accs.append(train_acc)
val_accs.append(val_acc)
scheduler.step(val_loss)
observations_df = pd.DataFrame()
observations_df['epoch count'] = [i for i in range(1, args.epochs + 1)]
observations_df['train loss'] = train_losses
observations_df['val loss'] = val_losses
observations_df['train acc'] = train_accs
observations_df['val acc'] = val_accs
observations_file_path = args.experiment_name + '_observations.csv'
observations_df.to_csv(observations_file_path)