-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathicepak_csv_import.py
230 lines (189 loc) · 8.06 KB
/
icepak_csv_import.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# # Define PCB components from CSV and export model images
# This example shows how to create different types of blocks and assign power
# and material to them using a *.csv input file
#
# Keywords: **Icepak**, **boundaries**, **pyVista**, **CSV**, **PCB**, **components**.
# ## Perform required imports
# +
import csv
import os
import tempfile
import time
from pathlib import Path
import numpy as np
import pyvista as pv
import ansys.aedt.core
import matplotlib as mpl
from IPython.display import Image
from matplotlib import cm
from matplotlib import pyplot as plt
# -
# Set constant values
AEDT_VERSION = "2024.2"
NG_MODE = False # Open Electronics UI when the application is launched.
# ## Download and open project
#
# Download the project and open it in non-graphical mode, using a temporary folder.
temp_folder = tempfile.TemporaryDirectory(suffix=".ansys")
project_name = os.path.join(temp_folder.name, "Icepak_CSV_Import.aedt")
ipk = ansys.aedt.core.Icepak(
project=project_name,
version=AEDT_VERSION,
new_desktop=True,
non_graphical=NG_MODE,
)
# Create the PCB as a simple block with lumped material properties.
board = ipk.modeler.create_box(
origin=[-30.48, -27.305, 0],
sizes=[146.685, 71.755, 0.4064],
name="board_outline",
material="FR-4_Ref",
)
# ## Components creation with a CSV file
#
# Components are represented as simple cubes with dimensions and properties specified in a CSV file.
filename = ansys.aedt.core.downloads.download_file(
"icepak", "blocks-list.csv", destination=temp_folder.name
)
# The CSV file lists block properties:
# - type (solid, network, hollow)
# - name
# - starting point (xs, ys, zs) and end point (xd, yd, zd)
# - material properties (for solid blocks)
# - power assignment
# - resistances to board and to case (for network blocks)
# - whether to add a monitor point to the block (0 or 1)
#
# The following table does not show the entire rows and data and only serves as a sample.
#
#
# | block_type | name | xs | ys | zs | xd | yd | zd | matname | power | Rjb | Rjc | Monitor_point |
# |------------|------|--------|--------|------|-------|-------|------|------------------|-------|-----|-----|---------------|
# | hollow | R8 | 31.75 | -20.32 | 0.40 | 15.24 | 2.54 | 2.54 | | 1 | | | 0 |
# | solid | U1 | 16.55 | 10.20 | 0.40 | 10.16 | 20.32 | 5.08 | Ceramic_material | 0.2 | | | 1 |
# | solid | U2 | -51 | 10.16 | 0.40 | 10.16 | 27.94 | 5.08 | Ceramic_material | 0.1 | | | 1 |
# | network | C180 | 47.62 | 19.05 | 0.40 | 3.81 | 2.54 | 2.43 | | 1.13 | 2 | 3 | 0 |
# | network | C10 | 65.40 | -1.27 | 0.40 | 3.81 | 2.54 | 2.43 | | 0.562 | 2 | 3 | 0 |
# | network | C20 | 113.03 | -0.63 | 0.40 | 2.54 | 3.81 | 2.43 | | 0.445 | 2 | 3 | 0 |
#
# In this step the code will loop over each line of the csv file, creates the blocks.
# It will create solid blocks and assign BCs.
# Every row of the csv has information of a particular block.
# +
with open(filename, "r") as csv_file:
csv_reader = csv.DictReader(csv_file)
for row in csv_reader:
origin = [
float(row["xs"]),
float(row["ys"]),
float(row["zs"]),
] # block starting point
dimensions = [
float(row["xd"]),
float(row["yd"]),
float(row["zd"]),
] # block lengths in 3 dimensions
block_name = row["name"] # block name
# Define material name
if row["matname"]:
material_name = row["matname"]
else:
material_name = "copper"
# creates the block with the given name, coordinates, material, and type
block = ipk.modeler.create_box(
origin=origin, sizes=dimensions, name=block_name, material=material_name
)
# Assign boundary conditions
if row["block_type"] == "solid":
ipk.assign_solid_block(
object_name=block_name,
power_assignment=row["power"] + "W",
boundary_name=block_name,
)
elif row["block_type"] == "network":
ipk.create_two_resistor_network_block(
object_name=block_name,
pcb=board.name,
power=row["power"] + "W",
rjb=row["Rjb"],
rjc=row["Rjc"],
)
else:
ipk.modeler[block.name].solve_inside = False
ipk.assign_hollow_block(
object_name=block_name,
assignment_type="Total Power",
assignment_value=row["power"] + "W",
boundary_name=block_name,
)
# Create temperature monitor points if assigned value is 1 in the last
# column of the csv file
if row["Monitor_point"] == "1":
ipk.monitor.assign_point_monitor_in_object(
name=row["name"],
monitor_quantity="Temperature",
monitor_name=row["name"],
)
# -
# ## Calculate the power assigned to all the components
power_budget, total_power = ipk.post.power_budget(units="W")
# ## Plot model
# ### Plot model using AEDT
#
# Set the colormap to use. Previously computed power budget can be used to set the minimum and maximum values.
cmap = plt.get_cmap("plasma")
norm = mpl.colors.Normalize(
vmin=min(power_budget.values()), vmax=max(power_budget.values())
)
scalarMap = cm.ScalarMappable(norm=norm, cmap=cmap)
# Color the objects depending
for obj in ipk.modeler.objects.values():
if obj.name in power_budget:
obj.color = [
int(i * 255) for i in scalarMap.to_rgba(power_budget[obj.name])[0:3]
]
obj.transparency = 0
else:
obj.color = [0, 0, 0]
obj.transparency = 0.9
# Export the model image by creating a list of all objects that excludes "Region". This list is then passed to the `export_model_picture` function. This approach ensures that the exported image fitted to the PCB and its compoents.
obj_list_noregion = list(ipk.modeler.object_names)
obj_list_noregion.remove("Region")
export_file = os.path.join(temp_folder.name, "object_power_AEDTExport.jpg")
ipk.post.export_model_picture(export_file, selections=obj_list_noregion, width=1920, height=1080)
Image(export_file)
# ### Plot model using pyAEDT
#
# Initialize a pyVista plotter
plotter = pv.Plotter(off_screen=True, window_size=[2048, 1536])
# Export all models objects to .obj files.
f = ipk.post.export_model_obj(export_path=temp_folder.name, export_as_single_objects=True, air_objects=False)
# Add objects to the PyVista plotter. These objects are either set to a black color or assigned scalar values,
# allowing them to be visualized with a colormap.
for file, color, opacity in f:
if color == (0, 0, 0):
plotter.add_mesh(mesh=pv.read(file), color="black", opacity=opacity)
else:
mesh = pv.read(filename=file)
mesh["Power"] = np.full(shape=mesh.n_points, fill_value=power_budget[Path(file).stem])
plotter.add_mesh(mesh=mesh, scalars="Power", cmap="viridis", opacity=opacity)
# Add a label to the object with the maximum temperature
max_pow_obj = "MP1"
plotter.add_point_labels(points=[ipk.modeler[max_pow_obj].top_face_z.center],
labels=[f"{max_pow_obj}, {power_budget[max_pow_obj]}W"],
point_size=20, font_size=30, text_color="red")
# Export file
export_file = os.path.join(temp_folder.name, "object_power_pyVista.png")
plotter.screenshot(filename=export_file, scale=1)
Image(export_file)
# ## Release AEDT
ipk.save_project()
ipk.release_desktop()
time.sleep(3) # Wait 3 seconds to allow Electronics Desktop to shut down before cleaning the temporary directory.
# ## Cleanup
#
# All project files are saved in the folder ``temp_dir.name``.
# If you've run this example as a Jupyter notebook you
# can retrieve those project files. The following cell
# removes all temporary files, including the project folder.
temp_folder.cleanup()