Skip to content

A collection of python scripts to make an evernote fileset imported into Obsidian more link and tag friendly.

Notifications You must be signed in to change notification settings

arashiyama/Obsidian-Link-Generator

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Auto Link Obsidian

A tool for enhancing Obsidian notes with auto-tagging and linking.

Features

  • Auto-tagging: Automatically generate tags for notes based on content
  • Tag-based linking: Create links between notes that share common tags
  • Semantic linking: Create links between notes based on semantic similarity
  • GenAI linking: Create intelligent links with AI-generated explanations
  • Note categorization: Add visual color coding to notes for better graph organization

Installation

# Clone the repository
git clone https://github.com/yourusername/auto_link_obsidian.git
cd auto_link_obsidian

# Install the package
pip install -e .

Usage

Configuration

Set your OpenAI API key in an environment variable:

export OPENAI_API_KEY="your-api-key"

Running the tool

# Run all enhancement tools
obsidian-enhance --all --vault-path /path/to/your/vault

# Run specific tools
obsidian-enhance --semantic-link --vault-path /path/to/your/vault

# See all available options
obsidian-enhance --help

Available Options

  • --vault-path: Path to your Obsidian vault
  • --auto-tag: Run auto-tagging on notes
  • --tag-link: Run tag-based linking
  • --semantic-link: Run semantic linking
  • --genai-link: Run GenAI linking
  • --categorize: Run note categorization
  • --all: Run all enhancement tools
  • --force-all: Process all notes (ignoring tracking)
  • --clean: Remove all auto-generated links
  • --verbose: Display detailed output

Architecture

The tool is designed with a modular architecture:

  • Core components:

    • Note data model
    • Configuration management
    • Embedding provider interface
    • Storage management
  • Linker implementations:

    • BaseLinker abstract class
    • SemanticLinker for semantic similarity
    • TagLinker for shared tags
    • GenAILinker for AI-generated links

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

  • OpenAI for their powerful embedding and language models
  • Obsidian for the amazing note-taking tool

About

A collection of python scripts to make an evernote fileset imported into Obsidian more link and tag friendly.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published