-
Notifications
You must be signed in to change notification settings - Fork 525
/
Copy pathnuslerp.py
272 lines (228 loc) · 9.39 KB
/
nuslerp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# Copyright (C) 2025 Arcee AI
# SPDX-License-Identifier: BUSL-1.1
from typing import Any, Dict, List, Optional
import torch
from torch._tensor import Tensor
from typing_extensions import override
from mergekit.architecture import WeightInfo
from mergekit.common import ImmutableMap, ModelReference
from mergekit.graph import Task
from mergekit.merge_methods.base import (
ConfigParameterDef,
MergeMethod,
MergeTensorInput,
)
from mergekit.merge_methods.rectify_embed import rectify_embed_sizes
class NuSlerpTask(Task[torch.Tensor]):
"""Task for performing NuSLERP or ChipAlign merges between two model tensors.
Supports both traditional NuSLERP and ChipAlign-style geodesic interpolation
with magnitude preservation, as described in https://arxiv.org/abs/2412.19819.
"""
gather_tensors: MergeTensorInput
tensor_parameters: ImmutableMap[ModelReference, ImmutableMap[str, Any]]
weight_info: WeightInfo
row_wise: bool
flatten: bool
base_model: Optional[ModelReference]
geodesic: bool # Whether to use ChipAlign-style geodesic interpolation
lambda_val: Optional[float] # Interpolation factor for geodesic mode
def uses_accelerator(self) -> bool:
return True
def arguments(self) -> Dict[str, Task]:
return {"tensors": self.gather_tensors}
def execute(self, tensors: Dict[ModelReference, torch.Tensor]) -> Tensor:
# Fast path for single-model case
if len(tensors) == 1:
return list(tensors.values())[0]
# Handle base model if provided
if self.base_model is not None:
if len(tensors) != 3:
raise RuntimeError(
"NuSlerp base model can not be one of the two models to merge"
)
base_tensor = tensors.pop(self.base_model)
else:
base_tensor = None
# Extract tensors and weights
keys = list(tensors.keys())
tensors = [tensors[key] for key in keys]
weights = [self.tensor_parameters[key]["weight"] for key in keys]
# Verify exactly two models are provided
if len(tensors) != 2:
raise RuntimeError(
"NuSlerp merge expects exactly two models (plus optional base model)"
)
# Calculate interpolation factor from weights
if abs(sum(weights)) < 1e-6:
t = 0.5 # Default when weights sum to zero
else:
t = weights[1] / sum(weights)
# Handle embedding tensors with different sizes
if base_tensor is not None:
tensors.append(base_tensor)
rectify_embed_sizes(self.weight_info, tensors)
# ChipAlign geodesic interpolation path
if self.geodesic:
if base_tensor is not None:
raise ValueError("ChipAlign-style geodesic interpolation does not support a base model.")
if self.lambda_val is None:
raise ValueError("lambda must be specified when geodesic=True")
# Extract the instruction and domain-specific tensors
instruction_tensor = tensors[0]
domain_tensor = tensors[1]
# Calculate norms for magnitude preservation
instruction_tensor_norm = torch.norm(instruction_tensor)
domain_tensor_norm = torch.norm(domain_tensor)
# Normalize to unit vectors
instruction_tensor_unit = instruction_tensor / instruction_tensor_norm
domain_tensor_unit = domain_tensor / domain_tensor_norm
# Perform spherical interpolation on unit vectors
from mergekit.merge_methods.slerp import slerp
merged_tensor_unit = slerp(
self.lambda_val, instruction_tensor_unit, domain_tensor_unit
)
# Apply magnitude scaling using weighted geometric mean (from ChipAlign paper)
merged_tensor = (
(instruction_tensor_norm ** (1 - self.lambda_val))
* (domain_tensor_norm ** self.lambda_val)
* merged_tensor_unit
)
return merged_tensor
# Standard NuSlerp path
if base_tensor is not None:
base_tensor = tensors.pop()
# For task vector mode (with base model)
return base_tensor + nuslerp(
t,
tensors[0] - base_tensor,
tensors[1] - base_tensor,
dim=0 if self.row_wise else -1,
flatten=self.flatten,
)
# Direct tensor mode (no base model)
return nuslerp(
t,
tensors[0],
tensors[1],
dim=0 if self.row_wise else -1,
flatten=self.flatten,
)
class NuSlerpMerge(MergeMethod):
"""Merge method implementing both NuSLERP and ChipAlign geodesic interpolation.
Provides a flexible, enhanced implementation of spherical linear interpolation
with additional options for interpolation mode and parameter customization.
"""
def name(self) -> str:
return "nuslerp"
@override
def pretty_name(self):
return "NuSLERP"
@override
def reference_url(self):
return "https://arxiv.org/abs/2412.19819" if self.is_chipalign() else None
def is_chipalign(self) -> bool:
"""Check if configured as ChipAlign mode based on parameters."""
try:
return self._parameters and self._parameters.get("geodesic", False)
except AttributeError:
return False
def parameters(self) -> List[ConfigParameterDef]:
return [
ConfigParameterDef(
name="nuslerp_row_wise",
required=False,
default_value=False,
description="SLERP row vectors instead of column vectors",
),
ConfigParameterDef(
name="nuslerp_flatten",
required=False,
default_value=True,
description="Treat tensors as flattened vectors",
),
ConfigParameterDef(
name="geodesic",
required=False,
default_value=False,
description="Enable ChipAlign-style geodesic interpolation with magnitude preservation",
),
ConfigParameterDef(
name="lambda",
required=False,
default_value=None,
description="Interpolation factor (0.0-1.0) for geodesic mode; 0=first model, 1=second model",
),
]
def tensor_parameters(self) -> List[ConfigParameterDef]:
return [ConfigParameterDef(name="weight", required=True)]
def make_task(
self,
*,
output_weight: WeightInfo,
tensors: MergeTensorInput,
base_model: Optional[ModelReference],
parameters: ImmutableMap[str, Any],
tensor_parameters: ImmutableMap[ModelReference, ImmutableMap[str, Any]],
**_kwargs,
) -> Task:
# Store parameters for reference_url to detect ChipAlign mode
self._parameters = parameters
return NuSlerpTask(
gather_tensors=tensors,
tensor_parameters=tensor_parameters,
weight_info=output_weight,
row_wise=parameters["nuslerp_row_wise"],
flatten=parameters["nuslerp_flatten"],
base_model=base_model,
geodesic=parameters["geodesic"],
lambda_val=parameters["lambda"],
)
def nuslerp(
t: float,
v0: torch.Tensor,
v1: torch.Tensor,
dim: int = -1,
eps: float = 1e-8,
flatten: bool = False,
):
"""Enhanced spherical linear interpolation (SLERP) with flexible tensor handling.
Args:
t: Interpolation factor between 0.0 and 1.0
v0: First tensor
v1: Second tensor
dim: Dimension along which to perform row/column-wise interpolation
eps: Small value to prevent division by zero
flatten: Whether to flatten tensors before interpolation
Returns:
Interpolated tensor with the same shape as inputs
"""
out_shape = v0.shape
def _normalize(x: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
"""Normalize tensor along last dimension with numeric stability."""
return x / torch.norm(x, dim=-1, keepdim=True).clamp(min=eps)
# Handle tensor reshaping based on interpolation mode
if flatten:
# Treat entire tensor as a single vector
v0 = v0.view(-1)
v1 = v1.view(-1)
elif dim != -1:
# Perform interpolation along specified dimension
v0 = v0.transpose(dim, -1)
v1 = v1.transpose(dim, -1)
# Normalize to unit vectors
v0_u = _normalize(v0)
v1_u = _normalize(v1)
# Calculate angle between vectors
cos_theta = torch.sum(v0_u * v1_u, dim=-1, keepdim=True)
theta = torch.acos(cos_theta.clamp(-1, 1))
sin_theta = torch.sin(theta)
# Handle (nearly) colinear vectors to avoid numerical issues
colinear = (sin_theta.abs() < eps).squeeze()
# SLERP formula: (sin((1-t)*θ)/sin(θ))*v0 + (sin(t*θ)/sin(θ))*v1
res = (torch.sin((1 - t) * theta) * v0 + torch.sin(t * theta) * v1) / sin_theta
# Fall back to linear interpolation for numerically colinear vectors
res[colinear] = (1 - t) * v0[colinear] + t * v1[colinear]
# Restore original tensor shape
if dim != -1 and not flatten:
res = res.transpose(dim, -1)
return res.view(out_shape)