-
Notifications
You must be signed in to change notification settings - Fork 115
/
Copy pathvae.c
131 lines (120 loc) · 4.23 KB
/
vae.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#include <stdlib.h>
#include <unistd.h>
#include <assert.h>
#include <stdio.h>
#include <math.h>
#include "kann.h"
#include "kann_extra/kann_data.h"
#define const_scalar(x) kann_new_scalar(KAD_CONST, (x))
static kann_t *model_gen(int n_in, int n_hidden, int n_code)
{
kad_node_t *x, *t, *s, *mu, *sigma;
// encoder
x = kad_feed(2, 1, n_in), x->ext_flag |= KANN_F_IN | KANN_F_TRUTH;
t = kad_tanh(kann_layer_dense(x, n_hidden));
mu = kann_layer_dense(t, n_code);
sigma = kad_relu(kann_layer_dense(t, n_code));
t = kad_add(kad_sample_normal(sigma), mu), t->ext_label = 1;
// decoder
t = kad_tanh(kann_layer_dense(t, n_hidden));
t = kad_sigm(kann_layer_dense(t, n_in)), t->ext_flag = KANN_F_OUT;
t = kad_ce_bin(t, x);
t = kad_mul(t, const_scalar((float)n_in));
// latent loss
s = kad_add(kad_square(sigma), const_scalar(1e-6f)); // sigma^2, plus a pseudo-count
s = kad_sub(s, kad_log(s)); // sigma^2 - log(sigma^2)
s = kad_add(s, kad_square(mu)); // mu^2 + sigma^2 - log(sigma^2)
s = kad_sub(s, const_scalar(1.0f)); // mu^2 + sigma^2 - log(sigma^2) - 1
s = kad_reduce_sum(s, 1);
s = kad_mul(s, const_scalar(0.5f));
s = kad_reduce_mean(s, 0);
t = kad_add(t, s);
t = kad_mul(t, const_scalar(1.0f / (n_in + 2 * n_code))), t->ext_flag |= KANN_F_COST;
return kann_new(t, 0);
}
int main(int argc, char *argv[])
{
int max_epoch = 50, mini_size = 64, max_drop_streak = 10;
int i, j, c, n_hidden = 64, n_code = 2, seed = 11, to_apply = 0, n_gen = 0;
kann_data_t *in = 0;
kann_t *ann = 0;
char *out_fn = 0, *in_fn = 0;
float lr = 0.01f, frac_val = 0.1f;
while ((c = getopt(argc, argv, "n:s:r:m:B:o:i:Ag:c:")) >= 0) {
if (c == 'n') n_hidden = atoi(optarg);
else if (c == 's') seed = atoi(optarg);
else if (c == 'i') in_fn = optarg;
else if (c == 'o') out_fn = optarg;
else if (c == 'r') lr = atof(optarg);
else if (c == 'm') max_epoch = atoi(optarg);
else if (c == 'B') mini_size = atoi(optarg);
else if (c == 'A') to_apply = 1;
else if (c == 'c') n_code = atoi(optarg);
else if (c == 'g') n_gen = atoi(optarg);
}
if (argc - optind < 1 && in_fn == 0 && n_gen == 0) {
FILE *fp = stdout;
fprintf(fp, "Usage: vae [options] <in.knd>\n");
fprintf(fp, "Options:\n");
fprintf(fp, " Model construction:\n");
fprintf(fp, " -i FILE read trained model from FILE []\n");
fprintf(fp, " -o FILE save trained model to FILE []\n");
fprintf(fp, " -s INT random seed [%d]\n", seed);
fprintf(fp, " -n INT number of hidden neurons [%d]\n", n_hidden);
fprintf(fp, " -c INT number of codes [%d]\n", n_code);
fprintf(fp, " Model training:\n");
fprintf(fp, " -r FLOAT learning rate [%g]\n", lr);
fprintf(fp, " -m INT max number of epochs [%d]\n", max_epoch);
fprintf(fp, " -B INT mini-batch size [%d]\n", mini_size);
fprintf(fp, " Prediction and generation:\n");
fprintf(fp, " -A reconstruct input\n");
fprintf(fp, " -g INT generate INT samples [%d]\n", n_gen);
return 1;
}
kad_trap_fe();
kann_srand(seed);
if (argc - optind >= 1)
in = kann_data_read(argv[optind]);
if (in_fn) {
ann = kann_load(in_fn);
if (in) assert(kann_dim_in(ann) == in->n_col);
}
if (!to_apply && n_gen == 0) { // train
if (!ann)
ann = model_gen(in->n_col, n_hidden, n_code);
kann_train_fnn1(ann, lr, mini_size, max_epoch, max_drop_streak, frac_val, in->n_row, in->x, in->x);
if (out_fn) kann_save(out_fn, ann);
} else if (to_apply) { // apply
for (i = 0; i < in->n_row; ++i) {
const float *y;
y = kann_apply1(ann, in->x[i]);
if (in->rname) printf("%s\t", in->rname[i]);
for (j = 0; j < in->n_col; ++j) {
if (j) putchar('\t');
printf("%.3g", y[j] + 1.0f - 1.0f);
}
putchar('\n');
}
} else {
kad_node_t *t, *out;
int j, n_out;
kann_set_batch_size(ann, 1);
out = ann->v[kann_find(ann, KANN_F_OUT, 0)];
t = ann->v[kann_find(ann, 0, 1)];
n_code = kad_len(t);
n_out = kad_len(out);
for (j = 0; j < n_gen; ++j) {
kad_eval_disable(t);
for (i = 0; i < n_code; ++i)
t->x[i] = kad_drand_normal(0);
kann_eval(ann, KANN_F_OUT, 0);
printf("%d", j + 1);
for (i = 0; i < n_out; ++i)
printf("\t%g", out->x[i] + 1.0f - 1.0f);
putchar('\n');
}
}
kann_delete(ann);
if (in) kann_data_free(in);
return 0;
}