-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest-ds1.py
34 lines (29 loc) · 1.29 KB
/
test-ds1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import numpy as np
from mer_classifier import MER_Classifier
from ls_classifier import LS_Classifier
from knn_classifier import kNN_Classifier
print("Dataset 1")
print("\nTesting all combinations of features")
datafile = open('data/ds-1.txt', 'r')
classifier = kNN_Classifier(datafile)
classifier.error_estimate_all_dimensions()
masks = [np.array([True, False, False, False]),
np.array([True, True, False, False]),
np.array([True, True, False, True]),
np.array([True, True, True, True])]
for dim, mask in enumerate(masks):
print("----------------------------")
print("{} Dimension(s)".format(dim+1))
print("mask = {}".format(mask))
# MER classifier
datafile = open('data/ds-1.txt', 'r')
classifier = MER_Classifier(datafile, mask)
print("\nMER Classifier")
print("P(e) = {0:.2f} (Training data)".format(classifier.error_estimate(use_training_set=True)))
print("P(e) = {0:.2f} (Validation data)".format(classifier.error_estimate()))
# LS classifier
datafile = open('data/ds-1.txt', 'r')
classifier = LS_Classifier(datafile, mask)
print("LS Classifier")
print("P(e) = {0:.2f} (Training data)".format(classifier.error_estimate(use_training_set=True)))
print("P(e) = {0:.2f} (Validation data)".format(classifier.error_estimate()))