Realisation of PyTorch Forecasting TemporalFusionTransformer for "FAVORITA" kaggle competition.
- create .env files:
- add absolute path to your project
make create_env_files
- create data dirs:
make dirs
- install requierments.txt
pip install -qr requierments.txt
- download data and unzip:
unzip ./src/data/processed/data_main_v3.pickle.zip ./src/data/processed/data_main_v3.pickle
rm ./src/data/processed/data_main_v3.pickle.zip
- download weights if you want to skip training part:
./src/data/check_points/my_favorite_expirement/epoch=29-val_loss=31.6326.ckpt
- optimizing hyperparameters
- exp_name could be any name
- accelerator could be gpu or cpu
make tune exp_name=my_favorite_expirement accelerator=cpu
- training
- exp_name could be any name
- use_optim_params
- if true will use optimized hp from tuning
- else will use stock parameters from settings.py
make train exp_name=my_favorite_expirement use_optim_params=true
- create submission.csv
- check_point_name: specify your best check point
- submission_file_name: name your submission file
make submmit check_point_name=my_favorite_expirement/epoch=29-val_loss=31.6326.ckpt submission_file_name=submission.csv
If you find this project usefull - leave a star.
Good luck in your submissions.