Skip to content

Temporal Fusion Transformer for Time Series project

Notifications You must be signed in to change notification settings

avrylov/Favorita-TFT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Neural network for Time Series

Kaggle Team: Yak-Ryl, Leaderboard: 130/606

Deployment

  • create .env files:
    • add absolute path to your project
make create_env_files
  • create data dirs:
make dirs
  • install requierments.txt
pip install -qr requierments.txt
  • download data and unzip:
unzip ./src/data/processed/data_main_v3.pickle.zip ./src/data/processed/data_main_v3.pickle
rm ./src/data/processed/data_main_v3.pickle.zip
  • download weights if you want to skip training part:
./src/data/check_points/my_favorite_expirement/epoch=29-val_loss=31.6326.ckpt

Optimizing and Training

  • optimizing hyperparameters
    • exp_name could be any name
    • accelerator could be gpu or cpu
make tune exp_name=my_favorite_expirement accelerator=cpu   
  • training
    • exp_name could be any name
    • use_optim_params
      • if true will use optimized hp from tuning
      • else will use stock parameters from settings.py
make train exp_name=my_favorite_expirement use_optim_params=true       

Submitting

  • create submission.csv
    • check_point_name: specify your best check point
    • submission_file_name: name your submission file
make submmit check_point_name=my_favorite_expirement/epoch=29-val_loss=31.6326.ckpt submission_file_name=submission.csv         

PS

If you find this project usefull - leave a star.
Good luck in your submissions.

contacts

Yak
Ryl (Team Leader)

About

Temporal Fusion Transformer for Time Series project

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published