-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse.py
52 lines (34 loc) · 1.11 KB
/
parse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from PIL import Image
import numpy as np
import cv2
import time
start_ts = time.time()
img = cv2.imread("/Users/alex/Desktop/Projects/Mustard/Images/test.JPG")
Z = img.reshape((-1,3))
img2 = Image.open('/Users/alex/Desktop/Projects/Mustard/Images/test.JPG')
img2 = img2.convert("RGBA")
# convert to np.float32
Z = np.float32(Z)
# define criteria, number of clusters(K) and apply kmeans()
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
K = 2
ret,label,center=cv2.kmeans(Z,K,None,criteria,3,cv2.KMEANS_RANDOM_CENTERS)
# print("++++++++++++++ RET ++++++++++++++++++")
# print(ret)
print("++++++++++++++ LABEL ++++++++++++++++++")
print(label)
print("++++++++++++++ CENTER ++++++++++++++++++")
print(center)
newData = []
print(center[0][0], center[0][1], center[0][2])
print(label.flatten())
print("-----------------------------------------------------")
for i in label.flatten():
if i == 1:
newData.append((255, 255, 255, 0))
else:
newData.append((center[i][0], center[i][1], center[i][2], 255))
img2.putdata(newData)
img2.save("img1.png", "PNG")
end_ts = time.time()
print(end_ts - start_ts)