3 face images.
angelina_jolie.jpg bradley_cooper.jpg kate_siegel.jpg paul_rudd.jpg shea_whigham.jpg(Image from https://github.com/timesler/facenet-pytorch/tree/master/data/test_images)
A similarity of each pair of images.
[['' 'angelina_jolie' 'bradley_cooper' 'kate_siegel' 'paul_rudd' 'shea_whigham']
['angelina_jolie' '0.0' '1.4458625' '0.89089304' '1.445407' '1.3876879']
['bradley_cooper' '1.4458625' '0.0' '1.3021401' '1.0183644' '1.0345106']
['kate_siegel' '0.89089304' '1.3021401' '0.0' '1.4002758' '1.3784742']
['paul_rudd' '1.445407' '1.0183644' '1.4002758' '0.0' '1.0893339']
['shea_whigham' '1.3876879' '1.0345106' '1.3784742' '1.0893339' '0.0']]
Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.
For the sample images,
$ python3 facenet_pytorch.py
If you want to specify the image folder, put the file path after the -d (--dir)
option.
$ python3 facenet_pytorch.py -d IMG_DIR_PATH
-w (--weight)
option select trained weights with the following datasets.
- vggface2
- casia-webface
$ python3 facenet_pytorch.py -w casia-webface
Pytorch
ONNX opset=11