-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch_api_ai.module
665 lines (564 loc) Β· 22.3 KB
/
search_api_ai.module
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
<?php
/**
* Implements hook_config_info().
*/
function search_api_ai_config_info() {
return [
'search_api_ai.settings' => [
'label' => t('Search Api Ai Settings'),
'group' => t('Configuration'),
],
];
}
/**
* Implements hook_autoload_info().
*
* Autoload classes required for Search API AI.
*/
function search_api_ai_autoload_info() {
return array(
'EmbeddingEnginePluginManager' => 'includes/EmbeddingEnginePluginManager.inc',
'EmbeddingEngineStatic' => 'includes/EmbeddingEngineStatic.inc',
'EmbeddingEnginePluginBase' => 'includes/EmbeddingEnginePluginBase.inc',
'EmbeddingEngineInterface' => 'includes/EmbeddingEngineInterface.inc',
'SearchApiAiBackendInterface' => 'includes/SearchApiAiBackendInterface.inc',
'TextChunker' => 'includes/TextChunker.inc',
'EmbeddingEngine' => 'includes/EmbeddingEngine.inc',
'SearchApiAiBackendPluginBase' => 'includes/SearchApiAiBackendPluginBase.inc',
'SearchApiAiBackend' => 'includes/SearchApiAiBackend.inc',
);
}
/**
* Implements hook_embedding_engine_info().
*/
function search_api_ai_embedding_engine_info() {
return [
'openai' => [
'label' => t('OpenAI Embeddings'),
'class' => 'OpenAiEmbeddingsDefault',
],
'pinecone' => [
'label' => t('Pinecone Vector Store'),
'class' => 'PineconeVectorClient',
],
];
}
/**
* Implements hook_search_api_data_type_info().
*/
function search_api_ai_search_api_data_type_info() {
return array(
'llm_vector_embedding' => array(
'name' => t('Embeddings'),
'fallback' => 'string', // Falls back to string if unsupported by the backend.
'conversion callback' => 'search_api_ai_convert_embedding',
),
);
}
function search_api_ai_get_embedding_dimension() {
$search_api_ai_config = config('search_api_ai.settings');
$embedding_config = $search_api_ai_config->get('embeddings_engine_configuration') ?? [];
// Ensure we are correctly retrieving the dimension
watchdog('search_api_ai', 'π Retrieved embedding dimension from config: @dimension', [
'@dimension' => isset($embedding_config['dimension']) ? $embedding_config['dimension'] : 'MISSING',
], WATCHDOG_DEBUG);
return (int) ($embedding_config['dimension'] ?? 1536);
}
function search_api_ai_convert_embedding($value, $original_type, $type, $field_name = 'unknown_field') {
if ($type !== 'llm_vector_embedding') {
watchdog('search_api_ai', "β οΈ Unexpected Type: $type", [], WATCHDOG_WARNING);
return NULL;
}
if (!is_string($value)) {
watchdog('search_api_ai', "β Expected a string, received @type for $field_name.", [
'@type' => gettype($value),
], WATCHDOG_ERROR);
return NULL;
}
$cleaned_text = trim(strip_tags($value));
if (empty($cleaned_text)) {
watchdog('search_api_ai', "β οΈ Skipping empty text for field: $field_name", [], WATCHDOG_WARNING);
return NULL;
}
$search_api_ai_config = config('search_api_ai.settings');
// β
Get the correct model name
$model = $search_api_ai_config->get('embeddings_engine');
if (empty($model)) {
watchdog('search_api_ai', "β No valid embeddings model set.", [], WATCHDOG_ERROR);
return NULL;
}
// β
Load OpenAI API settings
module_load_include('inc', 'openai', 'includes/string_helper');
$openai_config = config('openai.settings');
$api_key_name = $openai_config->get('api_key');
$api_key = key_get_key_value($api_key_name);
$openai_api = new OpenAIApi($api_key);
// β
Generate embedding
try {
$vector = $openai_api->embedding($cleaned_text, $model);
if (empty($vector) || !is_array($vector)) {
watchdog('search_api_ai', "β Failed to generate embedding for $field_name", [], WATCHDOG_ERROR);
return NULL;
}
// β
Ensure correct size
$expected_dimension = config_get('search_api_ai.settings', 'embeddings_engine_configuration')['dimension'] ?? 1536;
if (count($vector) !== $expected_dimension) {
watchdog('search_api_ai', "β Invalid vector size for $field_name: Expected $expected_dimension, got " . count($vector), [], WATCHDOG_ERROR);
return NULL;
}
return $vector;
} catch (Exception $e) {
watchdog('search_api_ai', "β OpenAI API error: " . $e->getMessage(), [], WATCHDOG_ERROR);
return NULL;
}
}
/**
* Implements hook_init().
*
* Initializes the plugin manager and stores it globally.
*/
function search_api_ai_init() {
// Instantiate the plugin manager.
$plugin_manager = new EmbeddingEnginePluginManager();
// Instantiate the static helper class, passing the plugin manager.
$embedding_engine_static = new EmbeddingEngineStatic($plugin_manager);
// Store it in a global variable if needed.
$GLOBALS['search_api_ai']['embedding_engine_static'] = $embedding_engine_static;
}
/**
* Implements hook_menu().
*/
function search_api_ai_menu() {
$items = array();
$items['admin/config/search-api-ai/test'] = array(
'title' => 'Embedding Engine Test Form',
'description' => 'A test form for embedding engine configuration.',
'page callback' => 'search_api_ai_embedding_engine_test_form',
'access arguments' => array('administer site configuration'),
'type' => MENU_NORMAL_ITEM,
'parent' => 'admin/config',
);
// Route for the embedding engine settings form.
/*$items['admin/config/search-api-ai/embedding-engine'] = array(
'title' => 'Embedding Engine Settings',
'page callback' => 'backdrop_get_form',
// Again, convert the Drupal form class to a Backdrop form function.
'page arguments' => array('search_api_ai_embedding_engine_config_form'),
'access arguments' => array('administer site configuration'),
);*/
return $items;
}
/**
* Implements hook_form_alter().
*/
function search_api_ai_form_alter(&$form, &$form_state, $form_id) {
if ($form_id == 'search_api_admin_index_edit' || $form_id == 'search_api_admin_add_index') {
// Add weights to existing form elements
$form['name']['#weight'] = 10;
$form['machine_name']['#weight'] = 20;
$form['item_type']['#weight'] = 30;
$form['datasource']['#weight'] = 40;
$form['enabled']['#weight'] = 50;
$form['description']['#weight'] = 60;
$form['server']['#weight'] = 70;
$form['read_only']['#weight'] = 90;
$form['options']['#weight'] = 100;
$form['submit']['#weight'] = 110;
// Load existing configuration
$config = config_get('search_api_ai.settings');
// Get the saved settings or default values
$settings = [];
if ($index) {
$settings = !empty($index->options['embedding_settings'])
? $index->options['embedding_settings']
: [];
}
// Set default values from saved settings
$selected_engine = isset($settings['embeddings_engine'])
? $settings['embeddings_engine']
: '';
// Load available embedding engines
$all_engines = module_invoke_all('embedding_engine_info');
// Filter valid embedding engines
$embedding_engines = array_filter($all_engines, function ($engine) {
return isset($engine['class'])
&& class_exists($engine['class'])
&& is_subclass_of($engine['class'], 'OpenAiEmbeddingsDefault');
});
// Build options array using model names
$options = [];
foreach ($embedding_engines as $id => $engine) {
$engine_class = $engine['class'];
if (class_exists($engine_class)) {
try {
$engine_instance = new $engine_class([], NULL);
$options[$id] = method_exists($engine_instance, 'getModelName')
? $engine_instance->getModelName()
: $id;
}
catch (Exception $e) {
watchdog('search_api_ai', 'Error instantiating embedding engine @engine: @message', [
'@engine' => $id,
'@message' => $e->getMessage(),
], WATCHDOG_ERROR);
}
}
}
// Get dimension value
$engine_config = $config['embeddings_engine_configuration'] ?? ['dimension' => 768];
$dimension_value = $engine_config['dimension'] ?? 768;
// Add the embedding engine selection with states
$form['embeddings_engine'] = [
'#type' => 'select',
'#title' => t('Embedding Engine'),
'#options' => $options,
'#default_value' => $selected_engine,
'#description' => t('Select the embedding engine to use. This needs to match the setting in the Vector database.'),
'#weight' => 75,
'#ajax' => [
'callback' => 'search_api_ai_update_embedding_dimension',
'wrapper' => 'embedding-dimension-wrapper',
'event' => 'change',
],
'#states' => [
'visible' => [
'select[name="server"]' => [
['value' => 'pinecone'],
['value' => 'milvus'],
],
],
],
];
// Add the configuration fieldset with states
$form['embeddings_engine_configuration'] = [
'#type' => 'fieldset',
'#title' => t('Embedding Engine Configuration'),
'#prefix' => '<div id="embedding-dimension-wrapper">',
'#suffix' => '</div>',
'#weight' => 80,
'#states' => [
'visible' => [
'select[name="server"]' => [
['value' => 'pinecone'],
['value' => 'milvus'],
],
],
],
];
$form['embeddings_engine_configuration']['dimension'] = [
'#type' => 'textfield',
'#title' => t('Embedding Dimension'),
'#default_value' => $dimension_value,
'#description' => t('The number of dimensions for embeddings.'),
];
// Add AJAX to the server selection
$form['server']['#ajax'] = [
'callback' => 'search_api_ai_server_selection_callback',
'wrapper' => 'edit-wrapper', // Ensure this matches your form wrapper ID
'method' => 'replace',
];
}
}
/**
* AJAX callback for server selection.
*/
function search_api_ai_server_selection_callback($form, &$form_state) {
return $form;
}
/**
* Renders the embedding engine test form.
*
* @return array
* The renderable form array.
*/
function search_api_ai_embedding_engine_test_form() {
// Load helper functions from includes.
module_load_include('inc', 'search_api_ai', 'includes/SearchApiAiBackend');
// Mock configuration for testing.
$configuration = array(
'embeddings_engine' => NULL,
'embeddings_engine_configuration' => array(
'dimension' => 768,
),
);
// Initialize form and form state.
$form = array();
$form_state = array(); // Initialize form state as an array.
// Pass $form_state by reference.
$form = search_api_ai_engine_configuration_form($form, $form_state, $configuration);
return $form;
}
/**
* Build the configuration form for selecting and configuring the embedding engine.
*/
function search_api_ai_embedding_engine_config_form($form, &$form_state) {
// Load existing configuration.
$config = config_get('search_api_ai.settings');
$selected_engine = $form_state['values']['embeddings_engine'] ??
($config['embeddings_engine'] ?? '');
// Default embedding dimension.
$engine_config = $config['embeddings_engine_configuration'] ?? ['dimension' => 768];
// Load available embedding engines.
$all_engines = module_invoke_all('embedding_engine_info');
// Filter only valid embedding engines dynamically.
$embedding_engines = array_filter($all_engines, function ($engine) {
return isset($engine['class']) && class_exists($engine['class']) && is_subclass_of($engine['class'], 'OpenAiEmbeddingsDefault');
});
// Populate the form options using **model name from the class**.
$options = [];
foreach ($embedding_engines as $id => $engine) {
$engine_class = $engine['class'];
if (class_exists($engine_class)) {
try {
$engine_instance = new $engine_class([], NULL);
$options[$id] = method_exists($engine_instance, 'getModelName') ?
$engine_instance->getModelName() : $id;
} catch (Exception $e) {
watchdog('search_api_ai', 'Error instantiating embedding engine @engine: @message', [
'@engine' => $id,
'@message' => $e->getMessage(),
], WATCHDOG_ERROR);
}
}
}
// Initialize dimension with a fallback value.
$dimension_value = $engine_config['dimension'] ?? 768;
// Set form elements.
$form['embeddings_engine'] = [
'#type' => 'select',
'#title' => t('Embedding Engine'),
'#options' => $options,
'#default_value' => $selected_engine,
'#description' => t('Select the embedding engine to use.'),
'#ajax' => [
'callback' => 'search_api_ai_update_embedding_dimension',
'wrapper' => 'embedding-dimension-wrapper', // This should match the fieldset wrapper
'event' => 'change',
],
];
$form['embeddings_engine_configuration'] = [
'#type' => 'fieldset',
'#title' => t('Embedding Engine Configuration'),
'#prefix' => '<div id="embedding-dimension-wrapper">',
'#suffix' => '</div>',
];
$form['embeddings_engine_configuration']['dimension'] = [
'#type' => 'textfield',
'#title' => t('Embedding Dimension'),
'#default_value' => $dimension_value,
'#description' => t('The number of dimensions for embeddings.'),
];
$form['actions'] = ['#type' => 'actions'];
$form['actions']['submit'] = [
'#type' => 'submit',
'#value' => t('Save Configuration'),
];
return $form;
}
/**
* AJAX Callback to update embedding dimension dynamically.
*/
function search_api_ai_update_embedding_dimension($form, &$form_state) {
$selected_engine = $form_state['values']['embeddings_engine'] ?? NULL;
$dimension_value = 768; // Default
// Load available embedding engines.
$all_engines = module_invoke_all('embedding_engine_info');
if ($selected_engine && isset($all_engines[$selected_engine])) {
$engine_class = $all_engines[$selected_engine]['class'];
if (class_exists($engine_class)) {
try {
// Retrieve OpenAI API key from configuration.
$api_key_name = config_get('openai.settings', 'api_key');
$api_key = key_get_key_value($api_key_name);
if (!$api_key) {
throw new Exception('OpenAI API key is missing.');
}
// Create OpenAI client instance.
$client = new OpenAIApi($api_key);
// Create embedding engine instance with correct arguments.
$engine_instance = new $engine_class(config_get('search_api_ai.settings'), $client);
// Get the dimension value dynamically.
if (method_exists($engine_instance, 'getDimension')) {
$dimension_value = $engine_instance->getDimension();
}
} catch (Exception $e) {
watchdog('search_api_ai', 'Failed to update dimension for @engine: @message', [
'@engine' => $selected_engine,
'@message' => $e->getMessage(),
], WATCHDOG_ERROR);
}
}
}
// Update the dimension field dynamically.
$form['embeddings_engine_configuration']['dimension']['#value'] = $dimension_value;
return $form['embeddings_engine_configuration'];
}
/**
* Submit handler for the embedding engine configuration form.
*/
function search_api_ai_embedding_engine_config_form_submit($form, &$form_state) {
$selected_engine = $form_state['values']['embeddings_engine'] ?? '';
$engine_config = $form_state['values']['embeddings_engine_configuration'] ?? ['dimension' => 768];
// Load available embedding engines.
$all_engines = module_invoke_all('embedding_engine_info');
if ($selected_engine && isset($all_engines[$selected_engine])) {
$engine_class = $all_engines[$selected_engine]['class'];
if (class_exists($engine_class)) {
try {
// Retrieve OpenAI API key.
$api_key_name = config_get('openai.settings', 'api_key');
$api_key = key_get_key_value($api_key_name);
if (!$api_key) {
throw new Exception('OpenAI API key is missing.');
}
// Create OpenAI client instance.
$client = new OpenAIApi($api_key);
$engine_instance = new $engine_class(config_get('search_api_ai.settings'), $client);
// Retrieve **clean model name** from the class.
$model_name = method_exists($engine_instance, 'getModelName')
? $engine_instance->getModelName()
: $selected_engine;
// Retrieve dimension from the selected engine.
if (method_exists($engine_instance, 'getDimension')) {
$engine_config['dimension'] = $engine_instance->getDimension();
}
} catch (Exception $e) {
backdrop_set_message(t('Failed to load embedding engine: @message', [
'@message' => $e->getMessage(),
]), 'error');
watchdog('search_api_ai', 'Error initializing embedding engine @engine: @message', [
'@engine' => $selected_engine,
'@message' => $e->getMessage(),
], WATCHDOG_ERROR);
}
}
}
// Save the configuration using **model name instead of engine ID**.
config_set('search_api_ai.settings', 'embeddings_engine', $model_name);
config_set('search_api_ai.settings', 'embeddings_engine_configuration', $engine_config);
backdrop_set_message(t('Embedding engine configuration has been saved.'));
}
/**
* Implements hook_search_api_index_items_alter().
*
* This hook alters items during indexing to set the embedding engine.
*
* @param array $items
* The items being indexed.
* @param object $index
* The index object.
*/
function search_api_ai_search_api_index_items_alter(array &$items, SearchApiIndex $index) {
global $search_api_ai_vectors;
if (!isset($search_api_ai_vectors)) {
$search_api_ai_vectors = [];
}
watchdog('search_api_ai', 'π Altering index items for @index', [
'@index' => $index->machine_name
], WATCHDOG_NOTICE);
// β
Load Search API index configuration
$query = db_select('search_api_index', 's')
->fields('s', ['options'])
->condition('machine_name', $index->machine_name)
->execute()
->fetchField();
if (!$query) {
watchdog('search_api_ai', "β Could not load index configuration.", [], WATCHDOG_ERROR);
return;
}
// β
Extract field settings from index options
$index_options = unserialize($query);
if (empty($index_options['fields']) || !is_array($index_options['fields'])) {
watchdog('search_api_ai', "β No valid fields found in index configuration.", [], WATCHDOG_ERROR);
return;
}
// β
Identify fields that need embedding
$embedding_fields = [];
foreach ($index_options['fields'] as $field_name => $field_info) {
if (!empty($field_info['real_type']) && $field_info['real_type'] === 'llm_vector_embedding') {
$embedding_fields[] = $field_name;
}
}
// β
Load configured embedding dimension from settings
$search_api_ai_config = config('search_api_ai.settings');
$expected_dimension = $search_api_ai_config->get('embeddings_engine_configuration')['dimension'] ?? 1536;
watchdog('search_api_ai', "π Using embedding dimension: @dimension", [
'@dimension' => $expected_dimension
], WATCHDOG_DEBUG);
// Process each entity for embedding
foreach ($items as $id => &$entity) {
if (!is_object($entity)) {
continue;
}
// β
Correctly Extract nid['value']
$nid = isset($entity->nid) ? $entity->nid : NULL;
if (empty($nid)) {
watchdog('search_api_ai', 'β οΈ Skipping entity @id due to missing nid. Raw nid: <pre>@nid</pre>', [
'@id' => $id,
'@nid' => print_r($entity->nid, TRUE),
], WATCHDOG_WARNING);
continue;
}
// β
Process each field independently
$field_embeddings = [];
foreach ($embedding_fields as $field_name) {
$real_field_name = ($field_name === 'body:value') ? 'body' : $field_name;
$field_texts = [];
if (!empty($entity->{$real_field_name})) {
if (is_array($entity->{$real_field_name})) {
foreach ($entity->{$real_field_name} as $lang => $values) {
if (is_array($values)) {
foreach ($values as $delta => $value_data) {
if (!empty($value_data['value']) && is_string($value_data['value'])) {
$cleaned_text = trim(strip_tags($value_data['value']));
if (!empty($cleaned_text)) {
$field_texts[] = $cleaned_text;
}
}
}
}
}
} else {
$cleaned_text = trim(strip_tags($entity->{$real_field_name}));
if (!empty($cleaned_text)) {
$field_texts[] = $cleaned_text;
}
}
}
foreach ($field_texts as $text) {
if (empty($text)) {
watchdog('search_api_ai', "β οΈ Skipping empty text for $real_field_name.", [], WATCHDOG_WARNING);
continue;
}
$converted_value = search_api_ai_convert_embedding($text, 'string', 'llm_vector_embedding', $real_field_name);
if (!empty($converted_value)) {
// β
Ensure the embedding has the correct size
if (!is_array($converted_value) || count($converted_value) !== $expected_dimension) {
watchdog('search_api_ai', "β Invalid vector size for $real_field_name in item $nid: Expected $expected_dimension, got " . count($converted_value), [], WATCHDOG_ERROR);
continue;
}
$field_embeddings[$real_field_name] = [
'content' => $text,
'vectors' => $converted_value,
];
} else {
watchdog('search_api_ai', "β Failed to generate embedding for $real_field_name", [], WATCHDOG_ERROR);
}
}
}
// β
Store embeddings in the global vector storage
if (!empty($field_embeddings)) {
$search_api_ai_vectors[$nid] = [
'nid' => $nid,
'vectors' => $field_embeddings,
];
watchdog('search_api_ai', 'π Final vectors stored for nid @nid: <pre>@vectors</pre>', [
'@nid' => $nid,
'@vectors' => print_r($search_api_ai_vectors[$nid], TRUE),
], WATCHDOG_DEBUG);
}
}
watchdog('search_api_ai', 'β
Finished altering index items for @index', [
'@index' => $index->machine_name
], WATCHDOG_NOTICE);
}