Skip to content

implementation of "Action Quality Assessment with Temporal Parsing Transformer"

Notifications You must be signed in to change notification settings

baiyang4/aqa_tpt

Repository files navigation

aqa_tpt

implementation of "Action Quality Assessment with Temporal Parsing Transformer"

todo

  • pretrain model on MTL-AQA
  • test script

Usage

Requirement

  • Python >= 3.8
  • Pytorch >= 1.7.1
  • cuda 10.1

Dataset Preparation

  • Please download the dataset from the [link], and unzip the file. (the processed data is based on this repo)
  • put the folder named "data_preprocessed" in ./data
  • put the file named "data_preprocessed/model_rgb.pth" in ./data

The data structure should be:

$DATASET_ROOT
├── model_rgb.pth
├── data_preprocessed/
    ├── MTL_AQA/
        ├── frames_long
            ├── 01_01/
                ├── 00017977.jpg
                ...
            ...
            └── 07_25/
                ├── 00040170.jpg
                ...
        ├── info
            ├── final_annotations_dict_with_dive_number
            ├── test_split_0.pkl
            └── train_split_0.pkl
    ├── AQA_7/
        ├── frames
            ├── diving-out
                ├── 001
                    ├── img_00001.jpg
                    ...
            ...
        ├── info
            ├── split_4_test_list.mat
            ├── split_4_train_list.mat

how to train

python -u -m torch.distributed.launch --nproc_per_node=8 train_pairencode1_decoder_1selfatt_self8head_ffn_sp_new.py --epoch_num=250 --dataset=MLT_AQA --bs_train=3 --bs_test=3 --use_pretrain=False --num_cluster=5 --margin_factor=3.2 --encode_video=False --hinge_loss=True --multi_hinge=True --d_model=512 --d_ffn=512 --exp_name=sp_new_103_5_3

Acknowledgement

Our code is based on CoRe. Thanks for their great work!

About

implementation of "Action Quality Assessment with Temporal Parsing Transformer"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages