-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_pairencode1_decoder_1selfatt_self8head_ffn_sp_new.py
580 lines (526 loc) · 28.5 KB
/
train_pairencode1_decoder_1selfatt_self8head_ffn_sp_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
from einops import repeat
import pdb
import os.path
import pandas as pd
import torch
import torch.nn as nn
import numpy as np
from utils.util import ResultsHandler, fix_bn
from torch.utils.tensorboard import SummaryWriter
from scipy import stats
import time
from torch import distributed
from tqdm import tqdm
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
from utils.opt import parse_opt
import torch.distributed as dist
from dataloader_pair_7 import get_AQA7Pair_dataloader
from dataloader_pair_MLT import get_MLTPair_dataloader
import random
from models_cluster_2layer_pairencode1_clsreg_decoder_1selfatt_self8head_ffn.model import I3D_backbone, PairModel
class RunPair:
def __init__(self, args, device, train_loader=None, test_loader=None, grouper=None, multi_gpu=False, evaluate=False, plot=False):
self.train_loader = train_loader
self.test_loader = test_loader
self.plot = plot
self.grouper = grouper
self.args = args
self.last_epoch = -1
self.multi_gpu_test = args.multi_gpu_test
self.device = device
self.local_rank = args.local_rank
self.voter_number = args.num_voting
self.cross_dd = args.cross_dd
self.multi_gpu = multi_gpu
self.use_checkpoint = args.use_checkpoint
self.checkpoint = None
self.use_pretrain = args.use_pretrain
self.lr = 0.0001
self.lr_factor = args.lr_factor
self.epoch_num = args.epoch_num
self.mse_loss = args.mse_loss
self.prob_loss = args.prob_loss
self.class_loss = args.class_loss
self.dataset = args.dataset
self.use_dd = args.use_dd
self.num_cluster = args.num_cluster
self.cluster_loss = False
self.model = PairModel(args).to(device)
self.backbone = None
if not self.use_pretrain:
self.backbone = I3D_backbone().to(device)
self.backbone.load_pretrain(args.pretrained_i3d_weight)
self.base_name = f'{type(self.model).__name__}_{type(self.backbone).__name__}_{args.num_cluster}_{args.margin_factor}_{args.dataset}_{args.cluster_norm_dim}_{args.hinge_loss}_{args.multi_hinge}_{args.exp_name}'
print(f'num_cluster: {args.num_cluster}, '
f'margin_factor:{args.margin_factor} '
f'encode video:{args.encode_video} '
f'hinge loss:{args.hinge_loss} '
f'weighted_cluster :{args.weighed_cluster} '
f'multi hinge:{args.multi_hinge} '
f'norm dim:{args.cluster_norm_dim}')
# optimizer
if self.use_pretrain:
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr, weight_decay=0.0005)
else:
self.optimizer = torch.optim.Adam([
{'params': self.backbone.parameters(), 'lr': self.lr},
{'params': self.model.action_decoder.parameters(), 'lr': self.lr},
{'params': self.model.pair_encoder.parameters(), 'lr': self.lr},
# {'params': self.model.weighed_norm.parameters()},
{'params': self.model.cls.parameters(), 'lr': 0.001},
{'params': self.model.reg.parameters(), 'lr': 0.001}
], lr=self.lr)
checkpoint = None
if self.use_checkpoint or evaluate:
checkpoint_path = os.path.join('./results', self.base_name, 'checkpoint.pth')
if evaluate:
try:
value_list = [i for i in os.listdir(os.path.join('./results', self.base_name)) if
i.split('.')[0].isnumeric()]
value_list.sort()
except:
value_list = []
if len(value_list) > 0:
checkpoint_path = os.path.join('./results', self.base_name, value_list[-1])
else:
checkpoint_path = 'none'
if os.path.exists(checkpoint_path):
checkpoint = torch.load(checkpoint_path, map_location=device)
if checkpoint is not None:
self.last_epoch = checkpoint['epoch']
self.model.load_state_dict(checkpoint['model'])
if not self.use_pretrain:
self.backbone.load_state_dict(checkpoint['backbone'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
self.classname = ['diving', 'gym_vault', 'ski_big_air', 'snowboard_big_air', 'sync_diving_3m', 'sync_diving_10m']
if self.multi_gpu:
self.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model)
self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[args.local_rank],
find_unused_parameters=True)
if not self.use_pretrain:
self.backbone = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.backbone)
self.backbone = torch.nn.parallel.DistributedDataParallel(self.backbone, device_ids=[args.local_rank],
find_unused_parameters=True)
# setup results handler
self.result_handler = ResultsHandler(self.model, self.backbone, args.dataset,
self.base_name, checkpoint,
local_rank=args.local_rank, multi_gpu=multi_gpu, class_idx=args.class_idx)
self.result_handler.optimizer = self.optimizer
if self.local_rank <= 0:
self.writer = SummaryWriter(comment=self.base_name)
def train(self):
mse = nn.MSELoss().to(self.device)
nll = nn.NLLLoss().to(self.device)
hinge = nn.MarginRankingLoss(margin=self.args.margin_factor)
# hinge = nn.KLDivLoss(reduction='batchmean')
# lr_steps = [4, 14]
# scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=lr_steps, gamma=0.5)
score_key = 'score' if self.dataset == 'AQA_7' else 'raw_score'
data_len = len(self.train_loader)
for epoch in range(self.last_epoch + 1, self.epoch_num):
if self.local_rank<1:
print(f'Start Epoch {epoch}, time: {datetime.now()}', flush=True)
self.model.train()
score_all = []
score_pred_all = []
if not self.use_pretrain:
self.backbone.train()
self.backbone.apply(fix_bn)
loss_cls_all = 0
loss_reg_all = 0
loss_att_all = 0
loss_var_all = 0
if self.cross_dd:
loss_dd_all = 0
""" Train """
self.result_handler.start_epoch()
for batch_idx, (data, target) in enumerate(self.train_loader):
# if self.dataset == 'AQA_7':
# assert (data['class'].float() == target['class'].float()).all()
# else:
# assert (data['difficulty'].float() == target['difficulty'].float()).all()
# loss = 0.0
video_1 = data['video'].to(self.device)
score_1 = data[score_key].unsqueeze(-1).to(self.device)
video_2 = target['video'].to(self.device)
score_2 = target[score_key].unsqueeze(-1).to(self.device)
batch_size = video_1.size(0)
score_all.append(data['score'])
if not self.use_pretrain:
video_1, video_2 = torch.chunk(self.backbone(torch.cat([video_1, video_2], 0)), 2)
out_prob, delta, logits_all = self.model(video_1, video_2)
glabel_1, rlabel_1 = self.grouper.produce_label(score_2 - score_1)
glabel_2, rlabel_2 = self.grouper.produce_label(score_1 - score_2)
leaf_probs = out_prob[-1].reshape(batch_size * 2, -1)
leaf_probs_1 = leaf_probs[:leaf_probs.shape[0] // 2]
leaf_probs_2 = leaf_probs[leaf_probs.shape[0] // 2:]
delta_1 = delta[:delta.shape[0] // 2]
delta_2 = delta[delta.shape[0] // 2:]
loss_cls = nll(leaf_probs_1, glabel_1.argmax(0))
loss_cls += nll(leaf_probs_2, glabel_2.argmax(0))
loss_reg = 0.
for i in range(self.grouper.number_leaf()):
mask = rlabel_1[i] >= 0
if mask.sum() != 0:
loss_reg += mse(delta_1[:, i][mask].reshape(-1, 1).float(),
rlabel_1[i][mask].reshape(-1, 1).float())
mask = rlabel_2[i] >= 0
if mask.sum() != 0:
loss_reg += mse(delta_2[:, i][mask].reshape(-1, 1).float(),
rlabel_2[i][mask].reshape(-1, 1).float())
if self.num_cluster > 0 and self.args.hinge_loss:
len_att = logits_all.shape[1] // self.args.num_layers
hinge_loss = 0.
var_loss = 0.
for i in range(self.args.num_layers):
hinge_loss_curr, var_loss_curr = self.get_att_loss(logits_all[:, i * len_att: (i+1) * len_att:, :], hinge)
hinge_loss += hinge_loss_curr
var_loss += var_loss_curr
# hinge_loss = self.get_att_loss(logits_all[:,:len_att, :], hinge)
loss_all = loss_cls + loss_reg + hinge_loss + 0.05 * var_loss
else:
loss_all = loss_cls + loss_reg
loss_all.backward()
self.optimizer.step()
self.optimizer.zero_grad()
relative_scores = self.grouper.inference(leaf_probs_2.detach().cpu().numpy(), delta_2.detach().cpu().numpy())
score_pred = (relative_scores.to(self.device) + score_2)
if self.dataset == 'MLT_AQA':
score_pred = score_pred * data['difficulty'].float().unsqueeze(-1).to(self.device)
score_pred_all.append(score_pred)
if self.multi_gpu:
loss_cls_record = self.reduce_tensor(loss_cls.data).item()
loss_reg_record = self.reduce_tensor(loss_reg.data).item()
if self.num_cluster > 0 and self.args.hinge_loss:
loss_att_record = self.reduce_tensor(hinge_loss.data).item()
loss_var_record = self.reduce_tensor(var_loss.data).item()
else:
loss_cls_record = loss_cls.item()
loss_reg_record = loss_reg.item()
if self.num_cluster > 0 and self.args.hinge_loss:
loss_att_record = hinge_loss.item()
loss_var_record = var_loss.item()
if self.local_rank < 1:
loss_cls_all += loss_cls_record / batch_size
loss_reg_all += loss_reg_record / batch_size
self.writer.add_scalar('Loss/class_loss', loss_cls_record / batch_size, batch_idx + epoch * data_len)
self.writer.add_scalar('Loss/reg_loss', loss_reg_record / batch_size, batch_idx + epoch * data_len)
if self.num_cluster > 0 and self.args.hinge_loss:
loss_att_all += loss_att_record / batch_size
loss_var_all += loss_var_record / batch_size
self.writer.add_scalar('Loss/att_loss', loss_att_record / batch_size, batch_idx + epoch * data_len)
# self.writer.add_scalar('Loss/class_loss', loss_class_record, i + epoch * num_iter)
# scheduler.step()]
if self.local_rank < 1:
score_all = torch.cat(score_all)
score_pred_all = torch.cat(score_pred_all)
score_all = score_all.detach().cpu().numpy().reshape(-1,1)
score_pred_all = score_pred_all.detach().cpu().numpy()
rho_curr, p = stats.spearmanr(score_pred_all, score_all)
r_l2_curr = (np.power((score_pred_all - score_all) / (score_all.max() - score_all.min()) ,2).sum() /
score_all.shape[0]) * 100
self.writer.add_scalar('R_train/rho', rho_curr, epoch * data_len)
self.writer.add_scalar('R_train/r_l2', r_l2_curr, epoch * data_len)
results_string = f'EPOCH:{epoch}, Training:'
results_string += f'loss_cls: {loss_cls_all / data_len:.4f}, loss_reg: {loss_reg_all / data_len:.4f}, ' \
f'loss_att: {loss_att_all / data_len:.4f}, loss_var: {loss_var_all / data_len:.4f}, ' \
f'correlation: {rho_curr:.4f}, r_l2: {r_l2_curr:.4f}'
if self.cross_dd:
results_string += f'loss_dd: {loss_dd_all / data_len:.4f}'
print(results_string, flush=True)
""" Evaluation """
if (epoch+1)<150:
if epoch % 40 == 0 and epoch > 0:
self.evaluate(epoch)
elif (epoch+1)%10 == 0:
self.evaluate(epoch)
elif (epoch+1)>180 and (epoch+1)%3==0:
self.evaluate(epoch)
#if (epoch + 1) % 10 == 0:
# self.evaluate(epoch)
#elif (epoch + 1) > 50 and (epoch + 1) % 7 == 0:
# self.evaluate(epoch)
#elif (epoch + 1) > 100 and (epoch + 1) % 3 == 0:
# self.evaluate(epoch)
def get_mask(self, d_len):
mask = []
for i in d_len:
mask_c = torch.ones(i)
if i < self.voter_number:
mask_c = torch.cat([mask_c, torch.zeros(self.voter_number - i)])
mask_c /= i
mask.append(mask_c)
return torch.stack(mask).to(self.device)
def get_att_loss(self, logits_all, hinge_loss):
if self.args.cluster_norm_dim == -1:
logits_all = logits_all.transpose(-1,-2)
softmax_dim = logits_all.shape[1]
temp_idx = repeat(torch.arange(1, softmax_dim + 1), 't -> b t k', b=logits_all.shape[0], k=logits_all.shape[-1]).float().to(self.device)
cluster_mean = (logits_all * temp_idx).sum(1)
var = (torch.abs(temp_idx - repeat(cluster_mean, 'b k -> b t k', t=softmax_dim)) * logits_all).sum(1)
loss_all = 0.
for i in range(logits_all.size(-1) - 1):
cluster_mean_former = cluster_mean[:, i]
cluster_mean_latter = cluster_mean[:, i + 1]
loss = hinge_loss(cluster_mean_latter, cluster_mean_former, torch.ones_like(cluster_mean_former))
if i == 0:
loss += hinge_loss(cluster_mean_former, torch.ones_like(cluster_mean_former), torch.ones_like(cluster_mean_former))
if i == logits_all.size(-1) - 2:
loss += hinge_loss(torch.ones_like(cluster_mean_former) * softmax_dim, cluster_mean_latter, torch.ones_like(cluster_mean_former))
loss_all += loss
# loss_all = loss_all * (5/self.args.num_cluster)
loss_all = loss_all * (5 / 5)
return loss_all, var.mean()
def get_att_loss_2(self, logits_all, hinge_loss):
if self.args.cluster_norm_dim == -1:
logits_all = logits_all.transpose(-1,-2)
softmax_dim = logits_all.shape[1]
tensor = torch.tensor([i for i in range(softmax_dim)]).to(logits_all.device).float().view(-1, 1).T + 1
cluster_mean = torch.matmul(tensor, logits_all).squeeze(1)
loss_all = 0.
residual_all = 0.
for i in range(logits_all.size(-1) - 1):
cluster_mean_former = cluster_mean[:, i]
cluster_mean_latter = cluster_mean[:, i + 1]
residual_all += cluster_mean_former - cluster_mean_latter
loss = hinge_loss(cluster_mean_latter, cluster_mean_former, torch.ones_like(cluster_mean_former))
# if i == 0:
# # residual_all += torch.ones_like(cluster_mean_former) - cluster_mean_former
# loss += hinge_loss(cluster_mean_former, torch.ones_like(cluster_mean_former), torch.ones_like(cluster_mean_former))
# if i == logits_all.size(-1) - 2:
# # residual_all += cluster_mean_latter - torch.ones_like(cluster_mean_former) * softmax_dim
# loss += hinge_loss(torch.ones_like(cluster_mean_former) * softmax_dim, cluster_mean_latter, torch.ones_like(cluster_mean_former))
loss_all += loss
# loss_all = loss_all * (5/self.args.num_cluster)
global_hinge_loss = residual_all + (self.args.margin_factor-6)
global_hinge_loss[global_hinge_loss < 0] = 0.
loss_all = loss_all + global_hinge_loss.mean()
return loss_all
# def get_att_loss(self, logits_all, kl_loss):
# logits_all = logits_all
# loss_all = 0.
# for i in range(logits_all.shape[-1] - 1):
# att_1 = logits_all[:, :, i]
# for j in range(i+1, logits_all.shape[-1]):
# # print(f'current comb {i}, {j}')
# att_2 = logits_all[:, :, j]
# loss = kl_loss(torch.log(att_1), att_2)
# loss_all -= loss
# return torch.max(torch.zeros_like(loss_all), 5. + loss_all)
def attention_plot(self, logits_all, video_ids=None, num_layer=1, tensorboard=False):
# logits_all: bs * clip_len * num_cluster
bs = logits_all.shape[0]
clip_len = logits_all.shape[1]
num_cluster = logits_all.shape[2]
att_save_path = os.path.join('./visualization', self.base_name)
os.makedirs(att_save_path, exist_ok=True)
for i in range(1):
figure = plt.figure()
logits_curr = logits_all[i].reshape(-1)
video_id_i = video_ids[i]
cluster_ids = np.repeat(np.array([i for i in range(num_cluster)]).reshape(1, -1), clip_len, axis=0).reshape(-1)
clip_ids = np.repeat(np.array([i for i in range(clip_len)]).reshape(1, -1), num_cluster, axis=1).reshape(-1)
data_plot = pd.DataFrame(data=[logits_curr, cluster_ids, clip_ids]).T
data_plot.columns = ['value', 'cluster_ids', 'clip_ids']
sns.lineplot(data=data_plot, x="clip_ids", y="value", hue="cluster_ids")
plt.title(f'{video_id_i}_layer:{num_layer}')
if tensorboard is False:
plt.show()
# plt.savefig(os.path.join(att_save_path, f'{video_id_i}.png'))
plt.close()
# plt.show()
return figure
def weighted_plot(self, weighted_logits, video_ids=None):
bs = weighted_logits.shape[0]
num_voter = weighted_logits.shape[1]
num_cluster = weighted_logits.shape[2]
att_save_path = os.path.join('./visualization', 'weighted', self.base_name)
os.makedirs(att_save_path, exist_ok=True)
for i in range(1):
logits_curr = weighted_logits[i].reshape(-1)
video_id_i = video_ids[i]
cluster_ids = np.repeat(np.array([i for i in range(num_cluster)]).reshape(1, -1), num_voter, axis=0).reshape(
-1)
voter_ids = np.repeat(np.array([i for i in range(num_voter)]).reshape(1, -1), num_cluster, axis=1).reshape(-1)
data_plot = pd.DataFrame(data=[logits_curr, cluster_ids, voter_ids]).T
data_plot.columns = ['value', 'cluster_ids', 'voter_ids']
sns.lineplot(data=data_plot, x="cluster_ids", y="value", hue="voter_ids")
plt.title(video_id_i)
# plt.savefig(os.path.join(att_save_path, f'{video_id_i}.png'))
# plt.close()
plt.show()
def evaluate(self, epoch=0):
self.model.eval()
if not self.use_pretrain:
self.backbone.eval()
score_key = 'score' if self.dataset == 'AQA_7' else 'raw_score'
with torch.no_grad():
score_all = []
score_pred_all = []
score_pred_all_2 = []
logits_all = []
video_ids = []
class_all = []
v_m_1 = 0
v_m_2 = 0
# groups = [[] for i in range(16)]
# groups_2 = [[] for i in range(16)]
for (data, targets) in self.test_loader:
video = data['video'].to(self.device)
# score = data['score'].unsqueeze(-1).to(self.device)
score_raw = data[score_key].unsqueeze(-1).to(self.device)
video_id = data['id']
score_voting = []
distance = []
mask_all = self.get_mask(data['t_len'])
mask_dy = []
leaf_id_all = []
for i, target in enumerate(targets):
video_t = target['video'].to(self.device)
score_t = target[score_key].unsqueeze(-1).to(self.device)
# mask_curr = mask_all[i].unsqueeze(-1)
# print(f'mask_curr = {mask_curr.shape}')
if not self.use_pretrain:
video_c, video_t = torch.chunk(self.backbone(torch.cat([video, video_t], 0)), 2)
else:
video_c = video
#
out_prob, delta, logits = self.model(video_c, video_t, train=False)
leaf_probs = out_prob[-1].reshape(video_c.shape[0], -1)
leaf_id = leaf_probs.argmax(dim=-1)
glabel_2, _ = self.grouper.produce_label(score_raw - score_t)
leaf_id_g = glabel_2.argmax(0)
# print(delta.shape)
relative_scores = self.grouper.inference(leaf_probs.detach().cpu().numpy(), delta.detach().cpu().numpy()).to(self.device).float()
# mask_curr = ((leaf_id > 6) & (leaf_id < 9))
mask_curr = ((leaf_id_g > 6) & (leaf_id_g < 15))
mask_dy.append(mask_curr)
# print(f'relative_scores = {relative_scores.shape}')
# score_voting.append((relative_scores.to(self.device) + score_t) * dd)
distance.append((score_raw - score_t).abs())
# distance.append(relative_scores.abs())
# if leaf_id > 13 or leaf_id < 2:
# distance.append(relative_scores.abs())
score_pred_curr = (relative_scores + score_t)
if self.dataset == 'MLT_AQA':
score_pred_curr = score_pred_curr * data['difficulty'].float().unsqueeze(-1).to(self.device)
error = score_raw - score_t - relative_scores
score_voting.append(score_pred_curr)
# groups[leaf_id_g].append((score_pred_curr, score))
# groups_2[leaf_id_g].append(error)
# groups_2[]
# print(f'score_voting = {score_voting.shape}')
# print(score_voting)
distance = torch.stack(distance).squeeze(-1).T
score_voting = torch.stack(score_voting).squeeze(-1).T
mask_dy = torch.stack(mask_dy, dim=-1).float()
for i, mask_curr in enumerate(mask_dy):
if mask_curr.sum() < 1:
mask_dy[i] = mask_all[i]
mask_dy /= mask_dy.sum(dim=-1).unsqueeze(-1)
v_m_1 += (mask_all > 0).sum().item()
v_m_2 += (mask_dy > 0).sum().item()
score_voting_2 = (score_voting * mask_dy).sum(-1)
score_voting = (score_voting * mask_all).sum(-1)
# score_voting = score_voting / len(targets)
logits_all.append(logits)
score_pred_all.append(score_voting)
score_pred_all_2.append(score_voting_2)
score_all.append(data['score'].unsqueeze(-1).to(self.device))
video_ids.append(video_id)
class_all.append(data['class'].to(self.device))
# self.attention_plot(logits_all)
score_all = torch.cat(score_all, dim=0).detach().cpu().numpy()
if self.num_cluster > 0:
logits_all = torch.cat(logits_all, dim=0).detach().cpu().numpy()
score_pred_all = torch.cat(score_pred_all, dim=0).detach().cpu().numpy()
score_pred_all_2 = torch.cat(score_pred_all_2, dim=0).detach().cpu().numpy()
class_all = torch.cat(class_all, dim=0).detach().cpu().numpy()
video_ids = np.concatenate(np.array(video_ids,dtype=object))
if self.multi_gpu and self.multi_gpu_test:
score_all = self.gather_results(score_all)
score_pred_all = self.gather_results(score_pred_all)
score_pred_all_2 = self.gather_results(score_pred_all_2)
class_all = self.gather_results(class_all)
video_ids = self.gather_results(video_ids)
if self.num_cluster > 0 and self.args.hinge_loss:
logits_all = self.gather_results(logits_all)
if self.local_rank < 1:
if self.multi_gpu:
# print(f'unique video id length = {len(np.unique(video_ids))}')
m = np.zeros_like(video_ids, dtype=bool)
m[np.unique(video_ids, return_index=True)[1]] = True
# print(f'mask length = {len(m)}')
score_all = score_all[m]
# print(f'length after mask = {len(score)}')
score_pred_all = score_pred_all[m]
score_pred_all_2 = score_pred_all_2[m]
class_all = class_all[m]
# if epoch % 5 == 0:
if self.plot:
len_att = logits_all.shape[1]//self.args.num_layers
for i in range(self.args.num_layers):
self.attention_plot(logits_all[:,i*len_att:(i+1)*len_att, :], video_ids, i)
rho_curr, r_l2_curr = self.result_handler.update_results(score_all, score_pred_all, class_all, epoch)
if self.local_rank < 1:
self.writer.add_scalar('Results/rho', rho_curr, epoch * len(self.train_loader))
self.writer.add_scalar('Results/r_l2_curr', r_l2_curr, epoch * len(self.train_loader))
len_att = logits_all.shape[1] // 2
img_2 = self.attention_plot(logits_all[:, :len_att, :], video_ids, 2, True)
img_1 = self.attention_plot(logits_all[:, -len_att:, :], video_ids, 1, True)
self.writer.add_figure('layer1', img_1, epoch * len(self.train_loader))
self.writer.add_figure('layer2', img_2, epoch * len(self.train_loader))
# self.result_handler.update_results(score_all, score_pred_all_2, None, epoch)
return score_all, score_pred_all, video_ids
def gather_results(self, results):
results_multi = [None for _ in range(distributed.get_world_size())]
distributed.all_gather_object(results_multi, results)
return np.concatenate(results_multi)
def reduce_tensor(self, tensor):
rt = tensor.clone()
distributed.all_reduce(rt, op=distributed.ReduceOp.SUM)
rt /= distributed.get_world_size()
return rt
def init_seeds(seed=0, cuda_deterministic=True, multi_gpu=True):
np.random.seed(seed) # Numpy module.
random.seed(seed) # Python random module.
torch.manual_seed(seed)
if multi_gpu:
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if cuda_deterministic:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if __name__ == '__main__':
args = parse_opt()
if args.local_rank < 0:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
dist.init_process_group(backend='nccl')
torch.cuda.set_device(args.local_rank)
device = torch.device(f'cuda:{args.local_rank}')
multi_gpu = False if args.local_rank < 0 else True
grouper = None
if args.dataset == 'AQA_7':
train_loader, test_loader, grouper = get_AQA7Pair_dataloader(args)
else:
train_loader, test_loader, grouper = get_MLTPair_dataloader(args)
# random_seed = 12
# init_seeds(random_seed + args.local_rank, True, multi_gpu)
# np.random.seed(seed) # Numpy module.
# random.seed(seed) # Python random module.
# torch.manual_seed(seed)
# if multi_gpu:
# torch.cuda.manual_seed(seed)
# torch.cuda.manual_seed_all(seed)
random_seed = 12
np.random.seed(random_seed) # Numpy module.
random.seed(random_seed) # Python random module.
torch.manual_seed(random_seed)
if multi_gpu:
torch.cuda.manual_seed(random_seed + args.local_rank)
torch.cuda.manual_seed_all(random_seed + args.local_rank)
run = RunPair(args, device, train_loader, test_loader, grouper, multi_gpu=multi_gpu)
run.train()