-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdemo.py
328 lines (262 loc) · 12.8 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import argparse
import os
import pdb
import numpy as np
import math
import itertools
import torch
from torch.nn import Sequential, Linear, ReLU, Sigmoid, Tanh, Dropout
from sklearn.preprocessing import MinMaxScaler
from sklearn import preprocessing
from torch_geometric.data import Data
from torch.autograd import Variable
import torch.nn.functional as F
import torch.nn as nn
from torch_geometric.nn import NNConv
from torch_geometric.nn import BatchNorm, EdgePooling, TopKPooling, global_add_pool
from sklearn.model_selection import KFold
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import scipy.io
import scipy.stats as stats
import pandas as pd
import seaborn as sns
import random
from gGAN import gGAN, netNorm
torch.cuda.empty_cache()
torch.cuda.empty_cache()
# random seed
manualSeed = 1
np.random.seed(manualSeed)
random.seed(manualSeed)
torch.manual_seed(manualSeed)
if torch.cuda.is_available():
device = torch.device('cuda')
print('running on GPU')
# if you are using GPU
torch.cuda.manual_seed(manualSeed)
torch.cuda.manual_seed_all(manualSeed)
torch.backends.cudnn.enabled = False
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
else:
device = torch.device("cpu")
print('running on CPU')
def demo():
def cast_data(array_of_tensors, version):
version1 = torch.tensor(version, dtype=torch.int)
N_ROI = array_of_tensors[0].shape[0]
CHANNELS = 1
dataset = []
edge_index = torch.zeros(2, N_ROI * N_ROI)
edge_attr = torch.zeros(N_ROI * N_ROI, CHANNELS)
x = torch.zeros((N_ROI, N_ROI)) # 35 x 35
y = torch.zeros((1,))
counter = 0
for i in range(N_ROI):
for j in range(N_ROI):
edge_index[:, counter] = torch.tensor([i, j])
counter += 1
for mat in array_of_tensors: # 1,35,35,4
if version1 == 0:
edge_attr = mat.view(1225, 1)
x = mat.view(nbr_of_regions, nbr_of_regions)
edge_index = torch.tensor(edge_index, dtype=torch.long)
edge_attr = torch.tensor(edge_attr, dtype=torch.float)
x = torch.tensor(x, dtype=torch.float)
data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr)
dataset.append(data)
elif version1 == 1:
edge_attr = torch.randn(N_ROI * N_ROI, CHANNELS)
x = torch.randn(N_ROI, N_ROI) # 35 x 35
edge_index = torch.tensor(edge_index, dtype=torch.long)
edge_attr = torch.tensor(edge_attr, dtype=torch.float)
x = torch.tensor(x, dtype=torch.float)
data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr)
dataset.append(data)
return dataset
#####################################################################################################
def linear_features(data):
n_roi = data[0].shape[0]
n_sub = data.shape[0]
counter = 0
num_feat = (n_roi * (n_roi - 1) // 2)
final_data = np.empty([n_sub, num_feat], dtype=float)
for k in range(n_sub):
for i in range(n_roi):
for j in range(i+1, n_roi):
final_data[k, counter] = data[k, i, j]
counter += 1
counter = 0
return final_data
def make_sym_matrix(nbr_of_regions, feature_vector):
sym_matrix = np.zeros([9, feature_vector.shape[1], nbr_of_regions, nbr_of_regions], dtype=np.double)
for j in range(9):
for i in range(feature_vector.shape[1]):
my_matrix = np.zeros([nbr_of_regions, nbr_of_regions], dtype=np.double)
my_matrix[np.triu_indices(nbr_of_regions, k=1)] = feature_vector[j, i, :]
my_matrix = my_matrix + my_matrix.T
my_matrix[np.diag_indices(nbr_of_regions)] = 0
sym_matrix[j, i,:,:] = my_matrix
return sym_matrix
def plot_predictions(predicted, fold):
plt.clf()
for j in range(predicted.shape[0]):
for i in range(predicted.shape[1]):
predicted_sub = predicted[j, i, :, :]
plt.pcolor(abs(predicted_sub))
if(j == 0 and i == 0):
plt.colorbar()
plt.imshow(predicted_sub)
plt.savefig('./plot/img' + str(fold) + str(j) + str(i) + '.png')
def plot_MAE(prediction, data_next, test, fold):
# mae
MAE = np.zeros((9), dtype=np.double)
for i in range(9):
MAE_i = abs(prediction[i, :, :] - data_next[test])
MAE[i] = np.mean(MAE_i)
plt.clf()
k = ['k=2', 'k=3', 'k=4', 'k=5', 'k=6', 'k=7', 'k=8', 'k=9', 'k=10']
sns.set(style="whitegrid")
df = pd.DataFrame(dict(x=k, y=MAE))
# total = sns.load_dataset('tips')
ax = sns.barplot(x="x", y="y", data=df)
min = MAE.min() - 0.01
max = MAE.max() + 0.01
ax.set(ylim=(min, max))
plt.savefig('./plot/mae' + str(fold) + '.png')
######################################################################################################################################
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
nn = Sequential(Linear(1, 1225), ReLU())
self.conv1 = NNConv(35, 35, nn, aggr='mean', root_weight=True, bias=True)
self.conv11 = BatchNorm(35, eps=1e-03, momentum=0.1, affine=True, track_running_stats=True)
nn = Sequential(Linear(1, 35), ReLU())
self.conv2 = NNConv(35, 1, nn, aggr='mean', root_weight=True, bias=True)
self.conv22 = BatchNorm(1, eps=1e-03, momentum=0.1, affine=True, track_running_stats=True)
nn = Sequential(Linear(1, 35), ReLU())
self.conv3 = NNConv(1, 35, nn, aggr='mean', root_weight=True, bias=True)
self.conv33 = BatchNorm(35, eps=1e-03, momentum=0.1, affine=True, track_running_stats=True)
def forward(self, data):
x, edge_index, edge_attr = data.x, data.edge_index, data.edge_attr
x1 = F.sigmoid(self.conv11(self.conv1(x, edge_index, edge_attr)))
x1 = F.dropout(x1, training=self.training)
x2 = F.sigmoid(self.conv22(self.conv2(x1, edge_index, edge_attr)))
x2 = F.dropout(x2, training=self.training)
embedded = x2.detach().cpu().clone().numpy()
return embedded
def embed(Casted_source):
embedded_data = np.zeros((1, 35), dtype=float)
i = 0
for data_A in Casted_source: ## take a subject from source and target data
embedded = generator(data_A) # 35 x35
if i == 0:
embedded = np.transpose(embedded)
embedded_data = embedded
else:
embedded = np.transpose(embedded)
embedded_data = np.append(embedded_data, embedded, axis=0)
i = i + 1
return embedded_data
def test_gGAN(data_next, embedded_train_data, embedded_test_data, embedded_CBT):
def x_to_x(x_train, x_test, nbr_of_trn, nbr_of_tst):
result = np.empty((nbr_of_tst, nbr_of_trn), dtype=float)
for i in range(nbr_of_tst):
x_t = np.transpose(x_test[i])
for j in range(nbr_of_trn):
result[i, j] = np.matmul(x_train[j], x_t)
return result
def check(neighbors, i, j):
for val in neighbors[i, :]:
if val == j:
return 1
return 0
def k_neighbors(x_to_x, k_num, nbr_of_trn, nbr_of_tst):
neighbors = np.zeros((nbr_of_tst, k_num), dtype=int)
used = np.zeros((nbr_of_tst, nbr_of_trn), dtype=int)
current = 0
for i in range(nbr_of_tst):
for k in range(k_num):
for j in range(nbr_of_trn):
if abs(x_to_x[i, j]) > current:
if check(neighbors, i, j) == 0:
neighbors[i, k] = j
current = abs(x_to_x[i, neighbors[i, k]])
current = 0
return neighbors
def subtract_cbt(x, cbt, length):
for i in range(length):
x[i] = abs(x[i] - cbt[0])
return x
def predict_samples(k_neighbors, t1, nbr_of_tst):
average = np.zeros((nbr_of_tst, 595), dtype=float)
for i in range(nbr_of_tst):
for j in range(len(k_neighbors[0])):
average[i] = average[i] + t1[k_neighbors[i,j],:]
average[i] = average[i] / len(k_neighbors[0])
return average
residual_of_tr_embeddings = subtract_cbt(embedded_train_data, embedded_CBT, len(embedded_train_data))
residual_of_ts_embeddings = subtract_cbt(embedded_test_data, embedded_CBT, len(embedded_test_data))
dot_of_residuals = x_to_x(residual_of_tr_embeddings, residual_of_ts_embeddings, len(train), len(test))
for k in range(2, 11):
k_neighbors_ = k_neighbors(dot_of_residuals, k, len(train), len(test))
if k == 2:
prediction = predict_samples(k_neighbors_, data_next, len(embedded_test_data))
prediction = np.reshape(prediction, (1, len(embedded_test_data), nbr_of_feat))
else:
new_predict = predict_samples(k_neighbors_, data_next, len(embedded_test_data))
new_predict = np.reshape(new_predict, (1, len(embedded_test_data), nbr_of_feat))
prediction = np.append(prediction, new_predict, axis=0)
return prediction
nbr_of_sub = int(input('Please select the number of subjects: '))
if nbr_of_sub < 5:
print("You can not give less than 5 to the number of subjects. ")
nbr_of_sub = int(input('Please select the number of subjects: '))
nbr_of_sub_for_cbt = int(input('Please select the number of subjects to generate the CBT: '))
nbr_of_regions = int(input('Please select the number of regions: '))
nbr_of_epochs = int(input('Please select the number of epochs: '))
nbr_of_folds = int(input('Please select the number of folds: '))
hyper_param1 = 100
nbr_of_feat = int((np.square(nbr_of_regions) - nbr_of_regions) / 2)
data = np.random.normal(0.6, 0.3, (nbr_of_sub, nbr_of_regions, nbr_of_regions))
data = np.abs(data)
independent_data = np.random.normal(0.6, 0.3, (nbr_of_sub_for_cbt, nbr_of_regions, nbr_of_regions))
independent_data = np.abs(independent_data)
data_next = np.random.normal(0.4, 0.3, (nbr_of_sub, nbr_of_regions, nbr_of_regions))
data_next = np.abs(data_next)
CBT = netNorm(independent_data, nbr_of_sub_for_cbt, nbr_of_regions)
gGAN(data, nbr_of_regions, nbr_of_epochs, nbr_of_folds, hyper_param1, CBT)
# embed train and test subjects
kfold = KFold(n_splits=nbr_of_folds, shuffle=True, random_state=manualSeed)
source_data = torch.from_numpy(data) # convert numpy array to torch tensor
source_data = source_data.type(torch.FloatTensor)
target_data = np.reshape(CBT, (1, nbr_of_regions, nbr_of_regions, 1))
target_data = torch.from_numpy(target_data) # convert numpy array to torch tensor
target_data = target_data.type(torch.FloatTensor)
i = 1
for train, test in kfold.split(source_data):
adversarial_loss = torch.nn.BCELoss()
l1_loss = torch.nn.L1Loss()
trained_model_gen = torch.load('./weight_' + str(i) + 'generator_.model')
generator = Generator()
generator.load_state_dict(trained_model_gen)
train_data = source_data[train]
test_data = source_data[test]
generator.to(device)
adversarial_loss.to(device)
l1_loss.to(device)
X_train_casted_source = [d.to(device) for d in cast_data(train_data, 0)]
X_test_casted_source = [d.to(device) for d in cast_data(test_data, 0)]
data_B = [d.to(device) for d in cast_data(target_data, 0)]
embedded_train_data = embed(X_train_casted_source)
embedded_test_data = embed(X_test_casted_source)
embedded_CBT = embed(data_B)
if i == 1:
data_next = linear_features(data_next)
predicted_flat = test_gGAN(data_next, embedded_train_data, embedded_test_data, embedded_CBT)
plot_MAE(predicted_flat, data_next, test, i)
i = i + 1
predicted = make_sym_matrix(nbr_of_regions, predicted_flat)
plot_predictions(predicted, i - 1)
demo()