Skip to content

Develop kalmanfilter resume #26

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: develop-kalmanfilter
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
191 changes: 191 additions & 0 deletions bayesml/kalmanfilter/kalmanfilter.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,191 @@
<!--
Document Author
Shota Saito <shota.s@gunma-u.ac.jp>
-->

Bayesian Kalman filter model with Gaussian-gamma prior distribution.

The stochastic data generative models are as follows:

* $D \in \mathbb{N}$ : a dimension of an observed variable
* $\boldsymbol{x}_n \in \mathbb{R}^D$ : an observed variable
* $L \in \mathbb{N}$ : a dimension of a latent variable
* $\boldsymbol{z}_n \in \mathbb{R}^L$ : a latent variable
* $\boldsymbol{C} \in \mathbb{R}^{D \times L}$ : a parameter
* $\boldsymbol{A} \in \mathbb{R}^{L \times L}$ : a parameter
* $\boldsymbol{I}_{D \times D}$ : $D \times D$ identity matrix
* $\boldsymbol{I}_{L \times L}$ : $L \times L$ identity matrix
* $\boldsymbol{\mu}_0 \in \mathbb{R}^{L}$ : a parameter
* $\lambda \in \mathbb{R}_{>0}$ : a parameter
* $\gamma \in \mathbb{R}_{>0}$ : a parameter
* $\gamma_0 \in \mathbb{R}_{>0}$ : a parameter


$$p(\boldsymbol{x}_n \mid \boldsymbol{z}_n, \boldsymbol{C}, \lambda)=\mathcal{N}(\boldsymbol{x}_n \mid \boldsymbol{C}\boldsymbol{z}_n, (\lambda \boldsymbol{I}_{D \times D})^{-1}),$$
$$p(\boldsymbol{z}_1 \mid \boldsymbol{\mu}_{0}, \gamma_0)=\mathcal{N}(\boldsymbol{z}_1 \mid \boldsymbol{\mu}_{0}, (\gamma_0 \boldsymbol{I}_{L \times L})^{-1}),$$
$$p(\boldsymbol{z}_n \mid \boldsymbol{z}_{n-1}, \boldsymbol{A}, \gamma)=\mathcal{N}(\boldsymbol{z}_n \mid \boldsymbol{A}\boldsymbol{z}_{n-1}, (\gamma \boldsymbol{I}_{L \times L})^{-1})$$

The prior distributions are as follows:

* $\beta_0 \in \mathbb{R}_{>0}$ : a known hyperparameter
* $\boldsymbol{c}_i \in \mathbb{R}^D$ : $i$-th column of $\boldsymbol{C}$

$$p(\boldsymbol{C})=\prod_{i=1}^{L} p(\boldsymbol{c}_i)=\prod_{i=1}^{L} \mathcal{N}(\boldsymbol{c}_i \mid \boldsymbol{0}, (\beta_0 \boldsymbol{I}_{D \times D})^{-1}).$$


* $a_0, b_0 \in \mathbb{R}_{>0}$ : known hyperparameters


$$p(\lambda)=\mathrm{Gam}(\lambda \mid a_0, b_0).$$


* $\delta_0 \in \mathbb{R}_{>0}$ : known hyperparameter
* $\boldsymbol{a}_i \in \mathbb{R}^L$ : $i$-th column of $\boldsymbol{A}$


$$ p(\boldsymbol{A})=\prod_{i=1}^{L} p(\boldsymbol{a}_i)=\prod_{i=1}^{L} \mathcal{N}(\boldsymbol{a}_i \mid \boldsymbol{0}, (\delta_0 \boldsymbol{I}_{L \times L})^{-1}).$$


* $c_0, d_0 \in \mathbb{R}_{>0}$ : known hyperparameters


$$p(\gamma)=\mathrm{Gam}(\gamma \mid c_0, d_0).$$


* $\boldsymbol{\nu}_0 \in \mathbb{R}^{L}$ : a known hyperparameter
* $\tau_0 \in \mathbb{R}_{>0}$ : a known hyperparameter
* $e_0, f_0 \in \mathbb{R}_{>0}$ : known hyperparameters


$$p(\boldsymbol{\mu}_0, \gamma_0)=\mathcal{N}(\boldsymbol{\mu}_0 \mid \boldsymbol{\nu}_0, (\tau_0 \gamma_0 \boldsymbol{I}_{L \times L})^{-1}) \mathrm{Gam}(\gamma_0 \mid e_0, f_0).$$

The approximate posterior distributions $q(\cdot)$ by variational Bayes are as follows:

* $\boldsymbol{m}_{n,i} \in \mathbb{R}^D$ : a hyperparameter ($i=1,2,\ldots,L$)
* $\boldsymbol{\Lambda}_{n,i} \in \mathbb{R}^{D \times D}$ : a hyperparameter ($i=1,2,\ldots,L$)
* $a_n \in \mathbb{R}_{>0}$ : a hyperparameter
* $b_n \in \mathbb{R}_{>0}$ : a hyperparameter
* $\boldsymbol{\eta}_{n,i} \in \mathbb{R}^L$ : a hyperparameter ($i=1,2,\ldots,L$)
* $\boldsymbol{\Xi}_{n,i} \in \mathbb{R}^{L \times L}$ : a hyperparameter ($i=1,2,\ldots,L$)
* $c_n \in \mathbb{R}_{>0}$ : a hyperparameter
* $d_n \in \mathbb{R}_{>0}$ : a hyperparameter
* $\boldsymbol{\nu}_1 \in \mathbb{R}^L$ : a hyperparameter
* $\boldsymbol{\Phi}_1 \in \mathbb{R}^{L \times L}$ : a hyperparameter
* $e_1 \in \mathbb{R}_{>0}$ : a hyperparameter
* $f_1 \in \mathbb{R}_{>0}$ : a hyperparameter
* $\boldsymbol{\mu}_{1} \in \mathbb{R}^L$ : a hyperparameter
* $\boldsymbol{P}_{1} \in \mathbb{R}^{L \times L}$ : a hyperparamete
* $\boldsymbol{\mu}_{n} \in \mathbb{R}^L$: a hyperparameter
* $\boldsymbol{P}_{n} \in \mathbb{R}^{L \times L}$ : a hyperparameter


$$q(\boldsymbol{C})=\prod_{i=1}^{L} q(\boldsymbol{c}_i)=\prod_{i=1}^{L} \mathcal{N}(\boldsymbol{c}_i \mid \boldsymbol{m}_{n,i}, (\boldsymbol{\Lambda}_{n,i})^{-1}),$$
$$q(\lambda)=\mathrm{Gam}(\lambda \mid a_n, b_n),$$
$$q(\boldsymbol{A})=\prod_{i=1}^{L} q(\boldsymbol{a}_i)=\prod_{i=1}^{L} \mathcal{N}(\boldsymbol{a}_i \mid \boldsymbol{\eta}_{n,i}, (\boldsymbol{\Xi}_{n,i})^{-1}),$$
$$q(\gamma)=\mathrm{Gam}(\gamma \mid c_n, d_n),$$
$$q(\boldsymbol{\mu}_0)=\mathcal{N}(\boldsymbol{\mu}_0 \mid \boldsymbol{\nu}_1, (\boldsymbol{\Phi}_1)^{-1}),$$
$$q(\gamma_0)=\mathrm{Gam}(\gamma_0 \mid e_1, f_1),$$
$$q(\boldsymbol{z}_1)=\mathcal{N}(\boldsymbol{z}_1 \mid \boldsymbol{\mu}_1, (\boldsymbol{P}_1)^{-1}),$$
$$q(\boldsymbol{z}_n)=\mathcal{N}(\boldsymbol{z}_n \mid \boldsymbol{\mu}_n, (\boldsymbol{P}_n)^{-1}),$$
where the updating rules of the hyperparameters are as follows:

$$\boldsymbol{\Lambda}_{n,i}=\left(\beta_0 + \frac{a_n}{b_n} \left( \sum_{j=1}^{n} \{(\boldsymbol{P}_j)^{-1}_{ii} + (\boldsymbol{\mu}_j)_i^2\} \right) \right)\boldsymbol{I}_{D \times D},$$
where $(\boldsymbol{P}_j)^{-1}_{ii}$ denotes the $(i,i)$ element of $(\boldsymbol{P}_j)^{-1}$ and $(\boldsymbol{\mu}_j)_i$ denotes the $i$-th component of $\boldsymbol{\mu}_j$.

$$\boldsymbol{m}_{n,i}=(\boldsymbol{\Lambda}_{n,i})^{-1} \frac{a_n}{b_n} \left(\boldsymbol{X}_n - [\boldsymbol{m}_{n,1}, \ldots, \boldsymbol{m}_{n,i-1}, \boldsymbol{0}, \boldsymbol{m}_{n,i+1}, \ldots, \boldsymbol{m}_{n,L}] [\boldsymbol{\mu}_1, \ldots, \boldsymbol{\mu}_n]\right) [(\boldsymbol{\mu}_1)_i, \ldots, (\boldsymbol{\mu}_n)_i]^\top,$$
where $\boldsymbol{X}_n=[\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n] \in \mathbb{R}^{D \times n}$ and $\boldsymbol{0} \in \mathbb{R}^D$ is zero vector.


$$a_n = a_0 + \frac{nD}{2}$$

$$b_n = b_0 + \frac{1}{2} \sum_{i=1}^{n}(\boldsymbol{x}_i^\top \boldsymbol{x}_i - 2\boldsymbol{x}_i^\top [\boldsymbol{m}_{n,1}, \ldots, \boldsymbol{m}_{n,L}] \boldsymbol{\mu}_i + \boldsymbol{\mu}_i^\top \widetilde{\boldsymbol{C}}_n \boldsymbol{\mu}_i),$$
where $\widetilde{\boldsymbol{C}}_n$ is the matrix whose $(j,j)$ element ($j=1,2,\ldots,L$) is given by
$\mathrm{Tr}\{(\boldsymbol{\Lambda}_{n,j})^{-1}\}+
\boldsymbol{m}_{n,j}^\top \boldsymbol{m}_{n,j}$
and $(j,l)$ element ($j,l=1,2,\ldots,L$) is given by
$\boldsymbol{m}_{n,j}^\top \boldsymbol{m}_{n,l}.$

$$\boldsymbol{\Xi}_{n,i}=\left(\delta_0 + \frac{c_n}{d_n} \left( \sum_{j=1}^{n-1} \{(\boldsymbol{P}_j)^{-1}_{ii} + (\boldsymbol{\mu}_j)_i^2\} \right) \right)\boldsymbol{I}_{L \times L}$$


$$\boldsymbol{\eta}_{n,i}=(\boldsymbol{\Xi}_{n,i})^{-1} \frac{c_n}{d_n} \left([\boldsymbol{\mu}_2,\ldots, \boldsymbol{\mu}_{n}] - [\boldsymbol{\eta}_{n,1}, \ldots, \boldsymbol{\eta}_{n,i-1}, \boldsymbol{0}, \boldsymbol{\eta}_{n,i+1}, \ldots, \boldsymbol{\eta}_{n,L}] [\boldsymbol{\mu}_1, \ldots, \boldsymbol{\mu}_{n-1}]\right)[(\boldsymbol{\mu}_1)_i, \ldots, (\boldsymbol{\mu}_{n-1})_i]^\top,$$
where $\boldsymbol{0} \in \mathbb{R}^L$ is zero vector.

$$c_n = c_0 + \frac{(n-1)L}{2}$$

$$d_n = d_0 + \frac{1}{2} \sum_{i=2}^{n} \left(\mathrm{Tr}\{(\boldsymbol{P}_i)^{-1}\} +\boldsymbol{\mu}_{i}^\top \boldsymbol{\mu}_{i} - 2\boldsymbol{\mu}_{i}^\top [\boldsymbol{\eta}_{n,1}, \ldots, \boldsymbol{\eta}_{n,L}] \boldsymbol{\mu}_{i-1} + \boldsymbol{\mu}_{i-1}^\top \widetilde{\boldsymbol{A}}_n\boldsymbol{\mu}_{i-1} \right),$$
where $\widetilde{\boldsymbol{A}}_n$ is the matrix whose $(j,j)$ element ($j=1,2,\ldots,L$) is given by
$\mathrm{Tr}\{(\boldsymbol{\Xi}_{n,j})^{-1}\}+
\boldsymbol{\eta}_{n,j}^\top \boldsymbol{\eta}_{n,j}$
and $(j,l)$ element ($j,l=1,2,\ldots,L$) is given by
$\boldsymbol{\eta}_{n,j}^\top \boldsymbol{\eta}_{n,l}.$

$$\boldsymbol{\nu}_1 = \frac{\tau_0 \boldsymbol{\nu}_0 + \boldsymbol{\mu}_1}{\tau_0 + 1}$$

$$\boldsymbol{\Phi}_1 =(\tau_0 + 1)\frac{e_1}{f_1} \boldsymbol{I}_{L \times L}$$

$$e_1 = e_0 + L$$

$$f_1 = f_0 + \frac{\tau_0}{2}(\mathrm{Tr}\{(\boldsymbol{\Phi}_1)^{-1}\}+\boldsymbol{\nu}_1^\top \boldsymbol{\nu}_1 - 2\boldsymbol{\nu}_0^\top \boldsymbol{\nu}_1 +\boldsymbol{\nu}_0^\top \boldsymbol{\nu}_0) + \frac{1}{2}(\mathrm{Tr}\{(\boldsymbol{P}_1)^{-1}\}+\boldsymbol{\mu}_1^\top \boldsymbol{\mu}_1 - 2\boldsymbol{\nu}_1^\top \boldsymbol{\mu}_1 + \mathrm{Tr}\{(\boldsymbol{\Phi}_1)^{-1}\}+\boldsymbol{\nu}_1^\top \boldsymbol{\nu}_1)$$


$$\boldsymbol{P}_1=\frac{e_1}{f_1}\boldsymbol{I}_{L \times L}+\frac{a_1}{b_1} \widetilde{\boldsymbol{C}}_1$$

$$\boldsymbol{\mu}_1=(\boldsymbol{P}_1)^{-1} \left(\frac{e_1}{f_1}\boldsymbol{\nu}_1+\frac{a_1}{b_1} [\boldsymbol{m}_{1,1}, \ldots, \boldsymbol{m}_{1,L}]^\top \boldsymbol{x}_1 \right)$$

$$\boldsymbol{P}_n=\frac{c_n}{d_n}\boldsymbol{I}_{L \times L}+\frac{a_n}{b_n} \widetilde{\boldsymbol{C}}_n$$

$$\boldsymbol{\mu}_n=(\boldsymbol{P}_n)^{-1} \left(\frac{c_n}{d_n}[\boldsymbol{\eta}_{n,1}, \ldots, \boldsymbol{\eta}_{n,L}]\boldsymbol{\mu}_{n-1}+\frac{a_n}{b_n}[\boldsymbol{m}_{n,1}, \ldots, \boldsymbol{m}_{n,L}]^\top \boldsymbol{x}_n \right)$$

Let
$$\boldsymbol{X}_n = [\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n], $$
$$\boldsymbol{Z}_n = [\boldsymbol{z}_1, \ldots, \boldsymbol{z}_n], $$
$$\boldsymbol{\theta}=\{\boldsymbol{C},\lambda, \boldsymbol{A}, \gamma, \boldsymbol{\mu}_0, \gamma_0\}.$$

The variational lower bound is

$$\mathbb{E}_{q(\boldsymbol{Z}_n, \boldsymbol{\theta})}[\ln p(\boldsymbol{X}_n, \boldsymbol{Z}_n, \boldsymbol{\theta})] - \mathbb{E}_{q(\boldsymbol{Z}_n, \boldsymbol{\theta})}[\ln q(\boldsymbol{Z}_n, \boldsymbol{\theta})]
=\mathbb{E}[\ln p(\boldsymbol{C})]+\mathbb{E}[\ln p(\lambda)]+\mathbb{E}[\ln p(\boldsymbol{A})]+\mathbb{E}[\ln p(\gamma)]+\mathbb{E}[\ln p(\boldsymbol{\mu}_0, \gamma_0)]
+\mathbb{E}[\ln p(\boldsymbol{z}_1 \mid \boldsymbol{\mu}_{0}, \gamma_0)]+\sum_{i=2}^n \mathbb{E}[\ln p(\boldsymbol{z}_i \mid \boldsymbol{z}_{i-1}, \boldsymbol{A}, \gamma)]+\sum_{j=1}^n \mathbb{E}[\ln p(\boldsymbol{x}_j \mid \boldsymbol{z}_j, \boldsymbol{C}, \lambda)]
-\sum_{k=1}^n \mathbb{E}[\ln q(\boldsymbol{z}_k)]-\mathbb{E}[\ln q(\boldsymbol{C})]-\mathbb{E}[\ln q(\lambda)]-\mathbb{E}[\ln q(\boldsymbol{A})]-\mathbb{E}[\ln q(\gamma)]
-\mathbb{E}[\ln q(\boldsymbol{\mu}_0)]-\mathbb{E}[\ln q(\gamma_0)],$$
where each term is given as follows:

$$\mathbb{E}[\ln p(\boldsymbol{C})]=\frac{DL}{2} \ln \left(\frac{\beta_0}{2 \pi} \right) - \frac{\beta_0}{2} \sum_{j=1}^L (\mathrm{Tr}\{(\boldsymbol{\Lambda}_{n,j})^{-1}\}+
\boldsymbol{m}_{n,j}^\top \boldsymbol{m}_{n,j})$$


$$\mathbb{E}[\ln p(\lambda)]=\ln \left(\frac{b_0^{a_0}}{\Gamma(a_0)} \right)+ (a_0 -1)(\psi(a_n) - \ln b_n)-\frac{b_0 a_n}{b_n}, $$
where $\Gamma(\cdot)$ is the gamma function and $\psi(\cdot)$ is the digamma function.

$$\mathbb{E}[\ln p(\boldsymbol{A})]=\frac{L^2}{2} \ln \left(\frac{\delta_0}{2 \pi} \right) - \frac{\delta_0}{2} \sum_{j=1}^L (\mathrm{Tr}\{(\boldsymbol{\Xi}_{n,j})^{-1}\}+
\boldsymbol{\eta}_{n,j}^\top \boldsymbol{\eta}_{n,j})$$

$$\mathbb{E}[\ln p(\gamma)]=\ln \left(\frac{d_0^{c_0}}{\Gamma(c_0)} \right)+ (c_0 -1)(\psi(c_n) - \ln d_n)-\frac{d_0 c_n}{d_n}$$

$$\mathbb{E}[\ln p(\boldsymbol{\mu}_0, \gamma_0)]=\frac{L}{2} \ln \left(\frac{\tau_0}{2 \pi} \right)+\ln \left(\frac{f_0^{e_0}}{\Gamma(e_0)} \right)-\frac{f_0 e_1}{f_1}+\left(\frac{L}{2}+e_0 -1 \right)(\psi(e_1) - \ln f_1)
- \frac{\tau_0 e_1}{2 f_1}(\mathrm{Tr}\{(\boldsymbol{\Phi}_1)^{-1}\}+\boldsymbol{\nu}_1^\top \boldsymbol{\nu}_1 - 2\boldsymbol{\nu}_0^\top \boldsymbol{\nu}_1 +\boldsymbol{\nu}_0^\top \boldsymbol{\nu}_0)$$

$$\mathbb{E}[\ln p(\boldsymbol{z}_1 \mid \boldsymbol{\mu}_{0}, \gamma_0)]=\frac{L}{2} \ln \left(\frac{1}{2 \pi} \right)+\frac{L}{2}(\psi(e_1) - \ln f_1)
-\frac{e_1}{2 f_1}(\mathrm{Tr}\{(\boldsymbol{P}_1)^{-1}\}+\boldsymbol{\mu}_1^\top \boldsymbol{\mu}_1 - 2\boldsymbol{\nu}_1^\top \boldsymbol{\mu}_1 + \mathrm{Tr}\{(\boldsymbol{\Phi}_1)^{-1}\}+\boldsymbol{\nu}_1^\top \boldsymbol{\nu}_1)$$

$$\mathbb{E}[\ln p(\boldsymbol{z}_i \mid \boldsymbol{z}_{i-1}, \boldsymbol{A}, \gamma)]=\frac{L}{2} \ln \left(\frac{1}{2 \pi} \right)+\frac{L}{2}(\psi(c_n) - \ln d_n)
-\frac{c_n}{2 d_n}\left(\mathrm{Tr}\{(\boldsymbol{P}_i)^{-1}\} +\boldsymbol{\mu}_{i}^\top \boldsymbol{\mu}_{i} - 2\boldsymbol{\mu}_{i}^\top [\boldsymbol{\eta}_{n,1}, \ldots, \boldsymbol{\eta}_{n,L}] \boldsymbol{\mu}_{i-1} + \boldsymbol{\mu}_{i-1}^\top \widetilde{\boldsymbol{A}}_n\boldsymbol{\mu}_{i-1} \right)$$

$$\mathbb{E}[\ln p(\boldsymbol{x}_j \mid \boldsymbol{z}_j, \boldsymbol{C}, \lambda)]=\frac{D}{2} \ln \left(\frac{1}{2 \pi} \right)+\frac{D}{2}(\psi(a_n) - \ln b_n)
-\frac{a_n}{2 b_n}(\boldsymbol{x}_j^\top \boldsymbol{x}_j - 2\boldsymbol{x}_j^\top [\boldsymbol{m}_{n,1}, \ldots, \boldsymbol{m}_{n,L}] \boldsymbol{\mu}_j + \boldsymbol{\mu}_j^\top \widetilde{\boldsymbol{C}}_n \boldsymbol{\mu}_j)$$

$$\mathbb{E}[\ln q(\boldsymbol{z}_k)]=\frac{1}{2}\ln \frac{|\boldsymbol{P}_k|}{(2 \pi)^L} - \frac{L}{2}$$

$$\mathbb{E}[\ln q(\boldsymbol{C})]=\sum_{i=1}^L \left( \frac{1}{2}\ln \frac{|\boldsymbol{\Lambda}_{n,i}|}{(2 \pi)^D} - \frac{D}{2} \right)$$

$$\mathbb{E}[\ln q(\lambda)]=\ln \left(\frac{b_n^{a_n}}{\Gamma(a_n)} \right)+(a_n -1)(\psi(a_n)-\ln b_n )-a_n$$

$$\mathbb{E}[\ln q(\boldsymbol{A})]=\sum_{i=1}^L \left( \frac{1}{2}\ln \frac{|\boldsymbol{\Xi}_{n,i}|}{(2 \pi)^L} - \frac{L}{2} \right)$$

$$\mathbb{E}[\ln q(\gamma)]=\ln \left(\frac{d_n^{c_n}}{\Gamma(c_n)} \right)+(c_n -1)(\psi(c_n)-\ln d_n )-c_n$$


$$\mathbb{E}[\ln q(\boldsymbol{\mu}_0)]=\frac{1}{2}\ln \frac{|\boldsymbol{\Phi}_1|}{(2 \pi)^L} - \frac{L}{2}$$

$$\mathbb{E}[\ln q(\gamma_0)]=\ln \left(\frac{f_1^{e_1}}{\Gamma(e_1)} \right)+(e_1 -1)(\psi(e_1)-\ln f_1 )-e_1$$