-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
711 lines (594 loc) · 138 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
<!DOCTYPE html>
<html>
<head>
<title>Matrix digital rain</title>
<meta charset="utf-8" />
<meta name="apple-mobile-web-app-capable" content="yes" /></meta>
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent" /></meta>
<meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0, viewport-fit=cover" />
<style>
@supports (padding-top: env(safe-area-inset-top)) {
body {
padding: 0;
height: calc(100% + env(safe-area-inset-top));
}
}
body {
background: transparent;
overflow: hidden;
margin: 0;
}
canvas {
width: 100vw;
height: 100vh;
}
</style>
</head>
<body>
<canvas id="matrixCanvas"></canvas>
<script type="text/javascript">
/*
MIT License
Copyright (c) 2018 Rezmason
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
const extendedContext = {};
const programs = {};
const textures = {};
const dynamicSizes = { fullscreen: { scale: 1 } };
const framebuffers = {};
const geometry = {};
const attributes = {};
const uniforms = {};
const msdfDataURL = "";
const extensionNames = [
"oes_texture_half_float",
"oes_texture_half_float_linear",
"ext_color_buffer_half_float",
"webgl_color_buffer_float",
"oes_standard_derivatives",
];
const palette = [
[0, 0, 0, 0],
[7, 33, 0, 255],
[15, 63, 2, 255],
[22, 96, 5, 255],
[38, 117, 17, 250],
[53, 137, 33, 250],
[71, 160, 48, 250],
[86, 181, 63, 250],
[104, 204, 79, 250],
[119, 224, 94, 250],
[135, 247, 109, 0],
[155, 247, 132, 0],
[175, 249, 158, 0],
[175, 249, 158, 0],
[175, 249, 158, 0],
[175, 249, 158, 0],
];
const fullscreen_frag_shader_source = `
precision mediump float;
varying vec2 vUV;
uniform sampler2D tex;
void main() {
vec4 color = texture2D(tex, vUV);
color.a = color.r; // Assuming the red channel is used for brightness
gl_FragColor = color;
}
`;
const fullscreen_vert_shader_source = `
precision mediump float;
attribute vec2 aPosition;
varying vec2 vUV;
void main() {
vUV = 0.5 * (aPosition + 1.0);
gl_Position = vec4(aPosition, 0, 1);
}
`;
const rain_compute_shader_source = `
precision highp float;
#define PI 3.14159265359
#define SQRT_2 1.4142135623730951
#define SQRT_5 2.23606797749979
uniform sampler2D previousComputeState;
uniform float numColumns, numRows;
uniform float time, tick;
uniform float fallSpeed, cycleSpeed;
uniform float glyphSequenceLength;
uniform float raindropLength;
highp float randomFloat( const in vec2 uv ) {
const highp float a = 12.9898, b = 78.233, c = 43758.5453;
highp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );
return fract(sin(sn) * c);
}
float wobble(float x) {
return x + 0.3 * sin(SQRT_2 * x) + 0.2 * sin(SQRT_5 * x);
}
float getRainBrightness(float simTime, vec2 glyphPos) {
float columnTimeOffset = randomFloat(vec2(glyphPos.x, 0.)) * 1000.;
float columnSpeedOffset = randomFloat(vec2(glyphPos.x + 0.1, 0.)) * 0.5 + 0.5;
float columnTime = columnTimeOffset + simTime * fallSpeed * columnSpeedOffset;
float rainTime = (glyphPos.y * 0.01 + columnTime) / raindropLength;
rainTime = wobble(rainTime);
return 1.0 - fract(rainTime);
}
vec2 computeRaindrop(float simTime, vec2 glyphPos) {
float brightness = getRainBrightness(simTime, glyphPos);
float brightnessBelow = getRainBrightness(simTime, glyphPos + vec2(0., -1.));
bool cursor = brightness > brightnessBelow;
return vec2(brightness, cursor);
}
vec2 computeSymbol(float simTime, bool isFirstFrame, vec2 glyphPos, vec2 screenPos, vec4 previous) {
float previousSymbol = previous.r;
float previousAge = previous.g;
bool resetGlyph = isFirstFrame;
if (resetGlyph) {
previousAge = randomFloat(screenPos + 0.5);
previousSymbol = floor(glyphSequenceLength * randomFloat(screenPos));
}
float age = previousAge;
float symbol = previousSymbol;
if (mod(tick, 1.0) == 0.) {
age += cycleSpeed;
if (age >= 1.) {
symbol = floor(glyphSequenceLength * randomFloat(screenPos + simTime));
age = fract(age);
}
}
return vec2(symbol, age);
}
void main() {
vec2 glyphPos = gl_FragCoord.xy;
vec2 screenPos = glyphPos / vec2(numColumns, numRows);
vec2 raindrop = computeRaindrop(time, glyphPos);
bool isFirstFrame = tick <= 1.;
vec4 previous = texture2D( previousComputeState, screenPos );
vec4 previousSymbol = vec4(previous.ba, 0.0, 0.0);
vec2 symbol = computeSymbol(time, isFirstFrame, glyphPos, screenPos, previousSymbol);
gl_FragColor = vec4(raindrop, symbol);
}
`;
const rain_vert_shader_source = `
precision lowp float;
attribute vec2 aPosition;
uniform vec2 size;
varying vec2 vUV;
void main() {
vUV = aPosition;
vec2 proportion = (size.y > size.x ? vec2(size.y / size.x, 1.) : vec2(1., size.x / size.y));
gl_Position = vec4((aPosition - 0.5) * 2.0 * proportion, 0.0, 1.0);
}
`;
const rain_frag_shader_source = `
#define PI 3.14159265359
#ifdef GL_OES_standard_derivatives
#extension GL_OES_standard_derivatives: enable
#endif
precision lowp float;
uniform sampler2D computeState;
uniform float numColumns, numRows;
uniform sampler2D glyphMSDF;
uniform float msdfPxRange;
uniform vec2 glyphMSDFSize;
uniform float glyphSequenceLength;
uniform vec2 glyphTextureGridSize;
varying vec2 vUV;
float median3(vec3 i) {
return max(min(i.r, i.g), min(max(i.r, i.g), i.b));
}
float modI(float a, float b) {
float m = a - floor((a + 0.5) / b) * b;
return floor(m + 0.5);
}
vec3 getBrightness(vec2 raindrop, vec2 uv) {
float base = raindrop.r;
bool isCursor = bool(raindrop.g);
float glint = base;
base = base * 1.1 - 0.5;
glint = glint * 2.5 - 1.5;
return vec3(
(isCursor ? vec2(0.0, 1.0) : vec2(1.0, 0.0)) * base,
glint
);
}
vec2 getSymbolUV(float index) {
float symbolX = modI(index, glyphTextureGridSize.x);
float symbolY = (index - symbolX) / glyphTextureGridSize.x;
symbolY = glyphTextureGridSize.y - symbolY - 1.;
return vec2(symbolX, symbolY);
}
vec2 getSymbol(vec2 uv, float index) {
uv = fract(uv * vec2(numColumns, numRows));
uv = (uv + getSymbolUV(index)) / glyphTextureGridSize;
vec2 symbol;
{
vec2 unitRange = vec2(msdfPxRange) / glyphMSDFSize;
vec2 screenTexSize = vec2(1.0) / fwidth(uv);
float screenPxRange = max(0.5 * dot(unitRange, screenTexSize), 1.0);
float signedDistance = median3(texture2D(glyphMSDF, uv).rgb);
float screenPxDistance = screenPxRange * (signedDistance - 0.5);
symbol.r = clamp(screenPxDistance + 0.5, 0.0, 1.0);
}
return symbol;
}
void main() {
vec4 data = texture2D(computeState, vUV);
vec3 brightness = getBrightness(data.rg, vUV);
vec2 symbol = getSymbol(vUV, data.b);
gl_FragColor = vec4(brightness.rg * symbol.r, brightness.b * symbol.g, 0.);
}
`;
const bloom_high_pass_shader_source = `
precision mediump float;
uniform sampler2D tex;
uniform float highPassThreshold;
varying vec2 vUV;
void main() {
vec4 color = texture2D(tex, vUV);
if (color.r < highPassThreshold) color.r = 0.0;
if (color.g < highPassThreshold) color.g = 0.0;
if (color.b < highPassThreshold) color.b = 0.0;
gl_FragColor = color;
}
`;
const bloom_blur_shader_source = `
precision mediump float;
uniform vec2 size;
uniform sampler2D tex;
uniform vec2 direction;
varying vec2 vUV;
void main() {
vec2 proportion = (size.y > size.x ? vec2(size.y / size.x, 1.) : vec2(1., size.x / size.y));
gl_FragColor =
texture2D(tex, vUV) * 0.442 +
(
texture2D(tex, vUV + direction / max(size.y, size.x) * proportion) +
texture2D(tex, vUV - direction / max(size.y, size.x) * proportion)
) * 0.279;
}
`;
const bloom_combine_shader_source = `
precision mediump float;
uniform sampler2D pyr_0, pyr_1, pyr_2, pyr_3, pyr_4;
uniform float bloomStrength;
varying vec2 vUV;
void main() {
vec4 total = vec4(0.);
total += texture2D(pyr_0, vUV) * 0.96549;
total += texture2D(pyr_1, vUV) * 0.92832;
total += texture2D(pyr_2, vUV) * 0.88790;
total += texture2D(pyr_3, vUV) * 0.84343;
total += texture2D(pyr_4, vUV) * 0.79370;
gl_FragColor = total * bloomStrength;
}
`;
const palette_shader_source = `
precision mediump float;
#define PI 3.14159265359
uniform sampler2D tex, bloomTex, paletteTex;
uniform float time;
varying vec2 vUV;
highp float rand( const in vec2 uv, const in float t ) {
const highp float a = 12.9898, b = 78.233, c = 43758.5453;
highp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );
return fract(sin(sn) * c + t);
}
void main() {
vec4 primary = texture2D(tex, vUV);
vec4 bloom = texture2D(bloomTex, vUV);
vec4 brightness = primary + bloom - rand( gl_FragCoord.xy, time ) * 0.0167;
gl_FragColor = vec4(
texture2D( paletteTex, vec2(brightness.r, 0.0)).rgb
+ min(vec3(0.756, 1.0, 0.46) * brightness.g * 2.0, vec3(1.0)),
1.0
);
}
`;
const init = (gl) => Object.assign(extendedContext, ...extensionNames.map((name) => Object.getPrototypeOf(gl.getExtension(name))));
const load = (gl, msdfImage, palette) => {
const buildShader = (source, isFragment) => {
const shader = gl.createShader(isFragment ? gl.FRAGMENT_SHADER : gl.VERTEX_SHADER);
gl.shaderSource(shader, source);
gl.compileShader(shader);
return shader;
};
const buildProgram = (vertexShader, fragmentShader) => {
const program = gl.createProgram();
gl.attachShader(program, vertexShader);
gl.attachShader(program, fragmentShader);
gl.linkProgram(program);
return program;
};
const fullscreen_frag_shader = buildShader(fullscreen_frag_shader_source, true);
const fullscreen_vert_shader = buildShader(fullscreen_vert_shader_source, false);
const rain_compute_shader = buildShader(rain_compute_shader_source, true);
const rain_frag_shader = buildShader(rain_frag_shader_source, true);
const rain_vert_shader = buildShader(rain_vert_shader_source, false);
const bloom_high_pass_shader = buildShader(bloom_high_pass_shader_source, true);
const bloom_blur_shader = buildShader(bloom_blur_shader_source, true);
const bloom_combine_shader = buildShader(bloom_combine_shader_source, true);
const palette_shader = buildShader(palette_shader_source, true);
programs.fullscreen = buildProgram(fullscreen_vert_shader, fullscreen_frag_shader);
uniforms.rain_program_tex = gl.getUniformLocation(programs.fullscreen, "tex");
attributes.fullscreen_program_aPosition = gl.getAttribLocation(programs.fullscreen, "aPosition");
programs.rain_compute = buildProgram(fullscreen_vert_shader, rain_compute_shader);
attributes.rain_compute_program_aPosition = gl.getAttribLocation(programs.rain_compute, "aPosition");
uniforms.rain_compute_program_time = gl.getUniformLocation(programs.rain_compute, "time");
uniforms.rain_compute_program_previousComputeState = gl.getUniformLocation(programs.rain_compute, "previousComputeState");
uniforms.rain_compute_program_tick = gl.getUniformLocation(programs.rain_compute, "tick");
gl.useProgram(programs.rain_compute);
gl.uniform1f(gl.getUniformLocation(programs.rain_compute, "numColumns"), 80);
gl.uniform1f(gl.getUniformLocation(programs.rain_compute, "glyphSequenceLength"), 57);
gl.uniform1f(gl.getUniformLocation(programs.rain_compute, "numRows"), 80);
gl.uniform1f(gl.getUniformLocation(programs.rain_compute, "fallSpeed"), 0.3);
gl.uniform1f(gl.getUniformLocation(programs.rain_compute, "raindropLength"), 0.75);
gl.uniform1f(gl.getUniformLocation(programs.rain_compute, "cycleSpeed"), 0.03);
programs.rain = buildProgram(rain_vert_shader, rain_frag_shader);
attributes.rain_program_aPosition = gl.getAttribLocation(programs.rain, "aPosition");
uniforms.rain_program_size = gl.getUniformLocation(programs.rain, "size");
uniforms.rain_program_computeState = gl.getUniformLocation(programs.rain, "computeState");
uniforms.rain_program_glyphMSDF = gl.getUniformLocation(programs.rain, "glyphMSDF");
gl.useProgram(programs.rain);
gl.uniform2f(gl.getUniformLocation(programs.rain, "glyphTextureGridSize"), 8, 8);
gl.uniform1f(gl.getUniformLocation(programs.rain, "numColumns"), 80);
gl.uniform2f(gl.getUniformLocation(programs.rain, "glyphMSDFSize"), 512, 512);
gl.uniform1f(gl.getUniformLocation(programs.rain, "numRows"), 80);
gl.uniform1f(gl.getUniformLocation(programs.rain, "msdfPxRange"), 4);
programs.bloom_high_pass = buildProgram(fullscreen_vert_shader, bloom_high_pass_shader);
attributes.bloom_high_pass_program_aPosition = gl.getAttribLocation(programs.bloom_high_pass, "aPosition");
uniforms.bloom_high_pass_program_tex = gl.getUniformLocation(programs.bloom_high_pass, "tex");
gl.useProgram(programs.bloom_high_pass);
gl.uniform1f(gl.getUniformLocation(programs.bloom_high_pass, "highPassThreshold"), 0.1);
programs.bloom_blur = buildProgram(fullscreen_vert_shader, bloom_blur_shader);
attributes.bloom_blur_program_aPosition = gl.getAttribLocation(programs.bloom_blur, "aPosition");
uniforms.bloom_blur_program_tex = gl.getUniformLocation(programs.bloom_blur, "tex");
uniforms.bloom_blur_program_size = gl.getUniformLocation(programs.bloom_blur, "size");
uniforms.bloom_blur_program_direction = gl.getUniformLocation(programs.bloom_blur, "direction");
programs.bloom_combine = buildProgram(fullscreen_vert_shader, bloom_combine_shader);
attributes.bloom_combine_program_aPosition = gl.getAttribLocation(programs.bloom_combine, "aPosition");
uniforms.bloom_combine_program_pyr_0 = gl.getUniformLocation(programs.bloom_combine, "pyr_0");
uniforms.bloom_combine_program_pyr_1 = gl.getUniformLocation(programs.bloom_combine, "pyr_1");
uniforms.bloom_combine_program_pyr_2 = gl.getUniformLocation(programs.bloom_combine, "pyr_2");
uniforms.bloom_combine_program_pyr_3 = gl.getUniformLocation(programs.bloom_combine, "pyr_3");
uniforms.bloom_combine_program_pyr_4 = gl.getUniformLocation(programs.bloom_combine, "pyr_4");
gl.useProgram(programs.bloom_combine);
gl.uniform1f(gl.getUniformLocation(programs.bloom_combine, "bloomStrength"), 0.7);
programs.palette = buildProgram(fullscreen_vert_shader, palette_shader);
attributes.palette_program_aPosition = gl.getAttribLocation(programs.palette, "aPosition");
uniforms.palette_program_tex = gl.getUniformLocation(programs.palette, "tex");
uniforms.palette_program_bloomTex = gl.getUniformLocation(programs.palette, "bloomTex");
uniforms.palette_program_time = gl.getUniformLocation(programs.palette, "time");
uniforms.palette_program_paletteTex = gl.getUniformLocation(programs.palette, "paletteTex");
geometry.rain = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, geometry.rain);
gl.bufferData(gl.ARRAY_BUFFER, Float32Array.from([0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0]), gl.STATIC_DRAW);
geometry.fullscreen = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, geometry.fullscreen);
gl.bufferData(gl.ARRAY_BUFFER, Float32Array.from([-4, -4, 4, -4, 0, 4]), gl.STATIC_DRAW);
const setTexParams = (texture, isLinear, data) => {
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, texture);
const filter = isLinear ? gl.LINEAR : gl.NEAREST;
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, filter);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, filter);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
if (data != null) {
if (data instanceof HTMLImageElement) {
gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, true);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, data);
} else {
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, data.length, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, Uint8ClampedArray.from(data.flat()));
}
}
};
for (let i = 0; i < 2; i++) {
const name = "rain_compute_doublebuffer_" + i;
const texture = gl.createTexture();
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, 80, 80, 0, gl.RGBA, extendedContext.HALF_FLOAT_OES, null);
setTexParams(texture, false);
const framebuffer = gl.createFramebuffer();
gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0);
textures[name] = texture;
framebuffers[name] = framebuffer;
}
const buildAndAddRTT = (name, scale) => {
const texture = gl.createTexture();
dynamicSizes[name] = { scale };
setTexParams(texture, true);
const framebuffer = gl.createFramebuffer();
gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0);
textures[name] = texture;
framebuffers[name] = framebuffer;
};
buildAndAddRTT("rain_output", 1);
for (let i = 0; i < 5; i++) {
const scale = 0.4 / 2 ** i;
buildAndAddRTT("bloom_high_pass_pyr_" + i, scale);
buildAndAddRTT("bloom_h_blur_pyr_" + i, scale);
buildAndAddRTT("bloom_v_blur_pyr_" + i, scale);
}
buildAndAddRTT("bloom_output", 1);
buildAndAddRTT("palette_output", 1);
textures.palette = gl.createTexture();
setTexParams(textures.palette, true, palette);
textures.msdf = gl.createTexture();
setTexParams(textures.msdf, true, msdfImage);
gl.enableVertexAttribArray(0);
gl.disable(gl.DEPTH_TEST);
gl.blendFuncSeparate(1, 1, 1, 1);
gl.clearColor(0, 0, 0, 1);
};
const resize = (gl, width, height) => {
dynamicSizes.fullscreen.width = width;
dynamicSizes.fullscreen.height = height;
for (var name in textures) {
const size = dynamicSizes[name];
if (size == null) {
continue;
}
size.width = Math.floor(width * size.scale);
size.height = Math.floor(height * size.scale);
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, textures[name]);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, size.width, size.height, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);
}
gl.useProgram(programs.rain);
gl.uniform2f(uniforms.rain_program_size, width, height);
};
const setViewportSizeTo = (gl, name) => {
const size = dynamicSizes[name];
gl.viewport(0, 0, size.width, size.height);
};
const bindTextureTo = (gl, texName, uniformName, index) => {
gl.activeTexture(gl.TEXTURE0 + index);
gl.bindTexture(gl.TEXTURE_2D, textures[texName]);
gl.uniform1i(uniforms[uniformName], index);
};
const bindGeometryTo = (gl, geometryName, attributeName) => {
gl.bindBuffer(gl.ARRAY_BUFFER, geometry[geometryName]);
gl.vertexAttribPointer(attributes[attributeName], 2, gl.FLOAT, false, 0, 0);
};
const draw = (gl, tick, time) => {
const doubleBufferFrontName = "rain_compute_doublebuffer_" + (tick % 2);
const doubleBufferBackName = "rain_compute_doublebuffer_" + ((tick + 1) % 2);
// rain compute
gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffers[doubleBufferFrontName]);
gl.viewport(0, 0, 80, 80);
gl.useProgram(programs.rain_compute);
bindGeometryTo(gl, "fullscreen", "rain_compute_program_aPosition");
bindTextureTo(gl, doubleBufferBackName, "rain_compute_program_previousComputeState", 0);
gl.uniform1f(uniforms.rain_compute_program_time, time);
gl.uniform1f(uniforms.rain_compute_program_tick, tick);
gl.drawArrays(gl.TRIANGLES, 0, 3);
// rain
gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffers.rain_output);
setViewportSizeTo(gl, "rain_output");
gl.clear(gl.COLOR_BUFFER_BIT);
gl.enable(gl.BLEND);
gl.useProgram(programs.rain);
bindGeometryTo(gl, "rain", "rain_program_aPosition");
bindTextureTo(gl, doubleBufferFrontName, "rain_program_computeState", 0);
bindTextureTo(gl, "msdf", "rain_program_glyphMSDF", 1);
gl.drawArrays(gl.TRIANGLES, 0, 6);
gl.disable(gl.BLEND);
// high pass pyramid
gl.useProgram(programs.bloom_high_pass);
gl.bindBuffer(gl.ARRAY_BUFFER, geometry.fullscreen);
gl.vertexAttribPointer(attributes.bloom_high_pass_program_aPosition, 2, gl.FLOAT, false, 0, 0);
for (let i = 0; i < 5; i++) {
const name = "bloom_high_pass_pyr_" + i;
gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffers[name]);
const size = dynamicSizes[name];
gl.viewport(0, 0, size.width, size.height);
const src = i === 0 ? textures.rain_output : textures["bloom_high_pass_pyr_" + (i - 1)];
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, src);
gl.uniform1i(uniforms.bloom_high_pass_program_tex, 0);
gl.drawArrays(gl.TRIANGLES, 0, 3);
}
// blur pyramids
gl.useProgram(programs.bloom_blur);
gl.bindBuffer(gl.ARRAY_BUFFER, geometry.fullscreen);
gl.vertexAttribPointer(attributes.bloom_blur_program_aPosition, 2, gl.FLOAT, false, 0, 0);
for (let i = 0; i < 5; i++) {
gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffers["bloom_h_blur_pyr_" + i]);
const hSize = dynamicSizes["bloom_h_blur_pyr_" + i];
gl.viewport(0, 0, hSize.width, hSize.height);
gl.uniform2f(uniforms.bloom_blur_program_size, hSize.width, hSize.height);
bindTextureTo(gl, "bloom_high_pass_pyr_" + i, "bloom_blur_program_tex", 0);
gl.uniform2f(uniforms.bloom_blur_program_direction, 1, 0);
gl.drawArrays(gl.TRIANGLES, 0, 3);
gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffers["bloom_v_blur_pyr_" + i]);
const vSize = dynamicSizes["bloom_v_blur_pyr_" + i];
gl.viewport(0, 0, vSize.width, vSize.height);
bindTextureTo(gl, "bloom_h_blur_pyr_" + i, "bloom_blur_program_tex", 0);
gl.uniform2f(uniforms.bloom_blur_program_direction, 0, 1);
gl.drawArrays(gl.TRIANGLES, 0, 3);
}
// bloom combine
gl.useProgram(programs.bloom_combine);
bindGeometryTo(gl, "fullscreen", "bloom_combine_program_aPosition");
gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffers.bloom_output);
setViewportSizeTo(gl, "bloom_output");
for (let i = 0; i < 5; i++) {
gl.activeTexture(gl.TEXTURE0 + i);
gl.bindTexture(gl.TEXTURE_2D, textures["bloom_v_blur_pyr_" + i]);
gl.uniform1i(uniforms["bloom_combine_program_pyr_" + i], i);
}
gl.drawArrays(gl.TRIANGLES, 0, 3);
// palette
gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffers.palette_output);
setViewportSizeTo(gl, "palette_output");
gl.useProgram(programs.palette);
bindGeometryTo(gl, "fullscreen", "palette_program_aPosition");
bindTextureTo(gl, "rain_output", "palette_program_tex", 0);
bindTextureTo(gl, "bloom_output", "palette_program_bloomTex", 1);
gl.uniform1f(uniforms.palette_program_time, time);
bindTextureTo(gl, "palette", "palette_program_paletteTex", 2);
gl.drawArrays(gl.TRIANGLES, 0, 3);
// upscale
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
setViewportSizeTo(gl, "fullscreen");
gl.useProgram(programs.fullscreen);
bindGeometryTo(gl, "fullscreen", "fullscreen_program_aPosition");
bindTextureTo(gl, "palette_output", "fullscreen_program_tex", 0);
gl.drawArrays(gl.TRIANGLES, 0, 3);
};
document.body.onload = async () => {
document.addEventListener("touchmove", (e) => e.preventDefault(), { passive: false });
const canvas = document.getElementById('matrixCanvas'); // Adjust this if needed
const offscreenCanvas = document.createElement('canvas');
const dimensions = { width: 1, height: 1 };
const resizeViewport = () => {
const devicePixelRatio = window.devicePixelRatio ?? 1;
canvas.width = Math.ceil(canvas.clientWidth * devicePixelRatio * 0.75);
canvas.height = Math.ceil(canvas.clientHeight * devicePixelRatio * 0.75);
offscreenCanvas.width = canvas.width;
offscreenCanvas.height = canvas.height;
};
window.onresize = resizeViewport;
resizeViewport();
const gl = canvas.getContext("webgl");
const offscreenCtx = offscreenCanvas.getContext('2d', { willReadFrequently: true });
const image = new Image();
image.crossOrigin = "anonymous";
image.src = msdfDataURL;
await image.decode();
init(gl);
load(gl, image, palette);
let tick = 0;
const start = Date.now();
const update = () => {
tick++;
let frameCount = 0;
if (dimensions.width !== canvas.width || dimensions.height !== canvas.height) {
dimensions.width = canvas.width;
dimensions.height = canvas.height;
resize(gl, dimensions.width, dimensions.height);
}
draw(gl, tick, (Date.now() - start) / 1000);
};
update();
};
</script>
</body>
</html>