-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNotaGenNode.py
665 lines (563 loc) · 28.9 KB
/
NotaGenNode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
import os
import time
import torch
from .utils import *
from .config import nota_lx, nota_small, nota_medium
from transformers import GPT2Config
from abctoolkit.utils import Barline_regexPattern
# from abctoolkit.transpose import Note_list, Pitch_sign_list
from abctoolkit.duration import calculate_bartext_duration
node_dir = os.path.dirname(os.path.abspath(__file__))
comfy_path = os.path.dirname(os.path.dirname(node_dir))
output_path = os.path.join(comfy_path, "output")
# Path to weights for inference
nota_model_path = os.path.join(comfy_path, "models", "TTS", "NotaGen")
# Folder to save output files
ORIGINAL_OUTPUT_FOLDER = os.path.join(output_path, 'notagen_original')
INTERLEAVED_OUTPUT_FOLDER = os.path.join(output_path, 'notagen_interleaved')
os.makedirs(ORIGINAL_OUTPUT_FOLDER, exist_ok=True)
os.makedirs(INTERLEAVED_OUTPUT_FOLDER, exist_ok=True)
class NotaGenRun:
model_names = ["notagenx.pth", "notagen_small.pth", "notagen_medium.pth", "notagen_large.pth"]
periods = ["Baroque", "Classical", "Romantic"]
composers = ["Bach, Johann Sebastian", "Corelli, Arcangelo", "Handel, George Frideric", "Scarlatti, Domenico", "Vivaldi, Antonio", "Beethoven, Ludwig van",
"Haydn, Joseph", "Mozart, Wolfgang Amadeus", "Paradis, Maria Theresia von", "Reichardt, Louise", "Saint-Georges, Joseph Bologne", "Schroter, Corona",
"Bartok, Bela", "Berlioz, Hector", "Bizet, Georges", "Boulanger, Lili", "Boulton, Harold", "Brahms, Johannes", "Burgmuller, Friedrich",
"Butterworth, George", "Chaminade, Cecile", "Chausson, Ernest", "Chopin, Frederic", "Cornelius, Peter", "Debussy, Claude", "Dvorak, Antonin",
"Faisst, Clara", "Faure, Gabriel", "Franz, Robert", "Gonzaga, Chiquinha", "Grandval, Clemence de", "Grieg, Edvard", "Hensel, Fanny",
"Holmes, Augusta Mary Anne", "Jaell, Marie", "Kinkel, Johanna", "Kralik, Mathilde", "Lang, Josephine", "Lehmann, Liza", "Liszt, Franz",
"Mayer, Emilie", "Medtner, Nikolay", "Mendelssohn, Felix", "Munktell, Helena", "Parratt, Walter", "Prokofiev, Sergey", "Rachmaninoff, Sergei",
"Ravel, Maurice", "Saint-Saens, Camille", "Satie, Erik", "Schubert, Franz", "Schumann, Clara", "Schumann, Robert", "Scriabin, Aleksandr",
"Shostakovich, Dmitry", "Sibelius, Jean", "Smetana, Bedrich", "Tchaikovsky, Pyotr", "Viardot, Pauline", "Warlock, Peter", "Wolf, Hugo", "Zumsteeg, Emilie"]
instrumentations = ["Chamber", "Choral", "Keyboard", "Orchestral", "Vocal-Orchestral", "Art Song"]
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
nota_model_path = nota_model_path
node_dir = node_dir
model_cache = None
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": (s.model_names, {"default": "notagenx.pth"}),
"period": (s.periods, {"default": "Romantic"}),
"composer": (s.composers, {"default": "Bach, Johann Sebastian"}),
"instrumentation": (s.instrumentations, {"default": "Keyboard"}),
"custom_prompt": ("STRING", {
"default": "Romantic | Bach, Johann Sebastian | Keyboard",
"multiline": True,
"tooltip": "Custom prompt must follow format: <period>|<composer>|<instrumentation>"
}),
"unload_model":("BOOLEAN", {"default": False}),
"temperature": ("FLOAT", {"default": 0.8, "min": 0, "max": 5, "step": 0.1}),
"top_k": ("INT", {"default": 50, "min": 0}),
"top_p": ("FLOAT", {"default": 0.95, "min": 0, "max": 1, "step": 0.01}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"comfy_python_path": ("STRING", {
"default": "",
"multiline": False,
"tooltip": "Absolute path of python.exe in ComfyUI environment"
}),
"musescore4_path": ("STRING", {
"default": "",
"tooltip": r"Absolute path e.g. D:\APP\MuseScorePortable\App\MuseScore\bin\MuseScore4.exe"
}),
},
}
RETURN_TYPES = ("AUDIO", "IMAGE", "STRING")
RETURN_NAMES = ("audio", "score", "message")
FUNCTION = "inference_patch"
CATEGORY = "🎤MW/MW-NotaGen"
def inference_patch(self, model, period, composer, instrumentation,
custom_prompt,
comfy_python_path,
musescore4_path,
unload_model,
temperature,
top_k,
top_p,
seed):
if seed != 0:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
if model == "notagenx.pth" or model == "notagen_large.pth":
cf = nota_lx
elif model == "notagen_small.pth":
cf = nota_small
elif model == "notagen_medium.pth":
cf = nota_medium
patch_size = cf["PATCH_SIZE"]
patch_length = cf["PATCH_LENGTH"]
char_num_layers = cf["CHAR_NUM_LAYERS"]
patch_num_layers = cf["PATCH_NUM_LAYERS"]
hidden_size = cf["HIDDEN_SIZE"]
patch_config = GPT2Config(num_hidden_layers=patch_num_layers,
max_length=patch_length,
max_position_embeddings=patch_length,
n_embd=hidden_size,
num_attention_heads=hidden_size // 64,
vocab_size=1)
byte_config = GPT2Config(num_hidden_layers=char_num_layers,
max_length=patch_size + 1,
max_position_embeddings=patch_size + 1,
hidden_size=hidden_size,
num_attention_heads=hidden_size // 64,
vocab_size=128)
nota_model = NotaGenLMHeadModel(encoder_config=patch_config, decoder_config=byte_config, model=model)
print("Parameter Number: " + str(sum(p.numel() for p in nota_model.parameters() if p.requires_grad)))
nota_model_path = os.path.join(self.nota_model_path, model)
if self.model_cache is None:
checkpoint = torch.load(nota_model_path, map_location=torch.device(self.device))
NotaGenRun.model_cache = checkpoint
del checkpoint
torch.cuda.empty_cache()
nota_model.load_state_dict(self.model_cache['model'])
nota_model = nota_model.to(self.device)
nota_model.eval()
if custom_prompt.strip():
period, composer, instrumentation = [i.strip() for i in custom_prompt.split('|')]
prompt_lines=[
'%' + period + '\n',
'%' + composer + '\n',
'%' + instrumentation + '\n']
patchilizer = Patchilizer(model)
# file_no = 1
bos_patch = [patchilizer.bos_token_id] * (patch_size - 1) + [patchilizer.eos_token_id]
num_gen = 0
unreduced_xml_path = None
save_xml_original = False
while num_gen <= 5: #num_samples:
start_time = time.time()
# start_time_format = time.strftime("%Y%m%d-%H%M%S")
prompt_patches = patchilizer.patchilize_metadata(prompt_lines)
byte_list = list(''.join(prompt_lines))
print(''.join(byte_list), end='')
prompt_patches = [[ord(c) for c in patch] + [patchilizer.special_token_id] * (patch_size - len(patch)) for patch
in prompt_patches]
prompt_patches.insert(0, bos_patch)
input_patches = torch.tensor(prompt_patches, device=self.device).reshape(1, -1)
failure_flag = False
end_flag = False
cut_index = None
tunebody_flag = False
while True:
predicted_patch = nota_model.generate(input_patches.unsqueeze(0),
top_k=top_k,
top_p=top_p,
temperature=temperature)
if not tunebody_flag and patchilizer.decode([predicted_patch]).startswith('[r:'): # start with [r:0/
tunebody_flag = True
r0_patch = torch.tensor([ord(c) for c in '[r:0/']).unsqueeze(0).to(self.device)
temp_input_patches = torch.concat([input_patches, r0_patch], axis=-1)
predicted_patch = nota_model.generate(temp_input_patches.unsqueeze(0),
top_k=top_k,
top_p=top_p,
temperature=temperature)
predicted_patch = [ord(c) for c in '[r:0/'] + predicted_patch
if predicted_patch[0] == patchilizer.bos_token_id and predicted_patch[1] == patchilizer.eos_token_id:
end_flag = True
break
next_patch = patchilizer.decode([predicted_patch])
for char in next_patch:
byte_list.append(char)
print(char, end='')
patch_end_flag = False
for j in range(len(predicted_patch)):
if patch_end_flag:
predicted_patch[j] = patchilizer.special_token_id
if predicted_patch[j] == patchilizer.eos_token_id:
patch_end_flag = True
predicted_patch = torch.tensor([predicted_patch], device=self.device) # (1, 16)
input_patches = torch.cat([input_patches, predicted_patch], dim=1) # (1, 16 * patch_len)
if len(byte_list) > 102400:
failure_flag = True
break
if time.time() - start_time > 20 * 60:
failure_flag = True
break
if input_patches.shape[1] >= patch_length * patch_size and not end_flag:
print('Stream generating...')
abc_code = ''.join(byte_list)
abc_lines = abc_code.split('\n')
tunebody_index = None
for i, line in enumerate(abc_lines):
if line.startswith('[r:') or line.startswith('[V:'):
tunebody_index = i
break
if tunebody_index is None or tunebody_index == len(abc_lines) - 1:
break
metadata_lines = abc_lines[:tunebody_index]
tunebody_lines = abc_lines[tunebody_index:]
metadata_lines = [line + '\n' for line in metadata_lines]
if not abc_code.endswith('\n'):
tunebody_lines = [tunebody_lines[i] + '\n' for i in range(len(tunebody_lines) - 1)] + [
tunebody_lines[-1]]
else:
tunebody_lines = [tunebody_lines[i] + '\n' for i in range(len(tunebody_lines))]
if cut_index is None:
cut_index = len(tunebody_lines) // 2
abc_code_slice = ''.join(metadata_lines + tunebody_lines[-cut_index:])
input_patches = patchilizer.encode_generate(abc_code_slice)
input_patches = [item for sublist in input_patches for item in sublist]
input_patches = torch.tensor([input_patches], device=self.device)
input_patches = input_patches.reshape(1, -1)
if not failure_flag:
generation_time_cost = time.time() - start_time
abc_text = ''.join(byte_list)
filename = time.strftime("%Y%m%d-%H%M%S") + \
"_" + str(int(generation_time_cost)) + ".abc"
# unreduce
unreduced_output_path = os.path.join(INTERLEAVED_OUTPUT_FOLDER, filename)
abc_lines = abc_text.split('\n')
abc_lines = list(filter(None, abc_lines))
abc_lines = [line + '\n' for line in abc_lines]
try:
abc_lines = self.rest_unreduce(abc_lines)
with open(unreduced_output_path, 'w') as file:
file.writelines(abc_lines)
print(f"Saved to {unreduced_output_path}",)
unreduced_xml_path = self.abc2xml(unreduced_output_path, INTERLEAVED_OUTPUT_FOLDER, comfy_python_path)
if unreduced_xml_path:
save_xml_original = True
else:
num_gen += 1
save_xml_original = False
except:
num_gen += 1
continue
else:
# original
original_output_path = os.path.join(ORIGINAL_OUTPUT_FOLDER, filename)
with open(original_output_path, 'w') as w:
w.write(abc_text)
print(f"Saved to {original_output_path}",)
if save_xml_original:
original_xml_path = self.abc2xml(original_output_path, ORIGINAL_OUTPUT_FOLDER, comfy_python_path)
if original_xml_path:
print(f"Conversion to {original_xml_path}",)
break
else:
num_gen += 1
continue
# file_no += 1
else:
print('Generation failed.')
num_gen += 1
if num_gen > 5:
raise Exception("All generation attempts failed after 6 tries. Try again.")
if unreduced_xml_path:
mp3_path = self.xml2mp3(unreduced_xml_path, musescore4_path)
png_paths = self.xml2png(unreduced_xml_path, musescore4_path)
# 处理音频
audio = None
if mp3_path and os.path.exists(mp3_path):
import torchaudio
waveform, sample_rate = torchaudio.load(mp3_path)
audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate}
else:
audio = self.get_empty_audio()
# 处理图片
images = []
if png_paths:
from PIL import Image, ImageOps
import numpy as np
for image_path in png_paths:
i = Image.open(image_path)
# 创建一个白色背景的图像
image = Image.new("RGB", i.size, (255, 255, 255))
# 将透明背景的图片粘贴到白色背景上
image.paste(i, mask=i.split()[3]) # 使用 Alpha 通道作为掩码
# i = ImageOps.exif_transpose(i) # 翻转图片
# 调整宽度为1024,保持宽高比
# width, height = i.size
# new_width = 1024
# new_height = int(height * (new_width / width))
# i = i.resize((new_width, new_height), Image.Resampling.LANCZOS)
image = image.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
images.append(image)
if len(images) > 1:
image1 = images[0]
for image2 in images[1:]:
image1 = torch.cat((image1, image2), dim=0)
else:
image1 = images[0]
else:
image1 = self.get_empty_image()
if unload_model:
del patchilizer
del nota_model
NotaGenRun.model_cache = None
torch.cuda.empty_cache()
return (
audio,
image1,
f"Saved to {INTERLEAVED_OUTPUT_FOLDER} and {ORIGINAL_OUTPUT_FOLDER}",
)
else:
if unload_model:
del patchilizer
del nota_model
NotaGenRun.model_cache = None
torch.cuda.empty_cache()
print(f".abc and .xml was saved to {INTERLEAVED_OUTPUT_FOLDER} and {ORIGINAL_OUTPUT_FOLDER}")
raise Exception("Conversion of .mp3 and .png failed, try again or check if MuseScore4 installation was successful.")
def get_empty_audio(self):
"""Return empty audio"""
return {"waveform": torch.zeros(1, 2, 1), "sample_rate": 44100}
def get_empty_image(self):
"""Return empty image"""
import numpy as np
return torch.from_numpy(np.zeros((1, 64, 64, 3), dtype=np.float32))
def rest_unreduce(self, abc_lines):
tunebody_index = None
for i in range(len(abc_lines)):
if '[V:' in abc_lines[i]:
tunebody_index = i
break
metadata_lines = abc_lines[: tunebody_index]
tunebody_lines = abc_lines[tunebody_index:]
part_symbol_list = []
voice_group_list = []
for line in metadata_lines:
if line.startswith('%%score'):
for round_bracket_match in re.findall(r'\((.*?)\)', line):
voice_group_list.append(round_bracket_match.split())
existed_voices = [item for sublist in voice_group_list for item in sublist]
if line.startswith('V:'):
symbol = line.split()[0]
part_symbol_list.append(symbol)
if symbol[2:] not in existed_voices:
voice_group_list.append([symbol[2:]])
z_symbol_list = [] # voices that use z as rest
x_symbol_list = [] # voices that use x as rest
for voice_group in voice_group_list:
z_symbol_list.append('V:' + voice_group[0])
for j in range(1, len(voice_group)):
x_symbol_list.append('V:' + voice_group[j])
part_symbol_list.sort(key=lambda x: int(x[2:]))
unreduced_tunebody_lines = []
for i, line in enumerate(tunebody_lines):
unreduced_line = ''
line = re.sub(r'^\[r:[^\]]*\]', '', line)
pattern = r'\[V:(\d+)\](.*?)(?=\[V:|$)'
matches = re.findall(pattern, line)
line_bar_dict = {}
for match in matches:
key = f'V:{match[0]}'
value = match[1]
line_bar_dict[key] = value
# calculate duration and collect barline
dur_dict = {}
for symbol, bartext in line_bar_dict.items():
right_barline = ''.join(re.split(Barline_regexPattern, bartext)[-2:])
bartext = bartext[:-len(right_barline)]
try:
bar_dur = calculate_bartext_duration(bartext)
except:
bar_dur = None
if bar_dur is not None:
if bar_dur not in dur_dict.keys():
dur_dict[bar_dur] = 1
else:
dur_dict[bar_dur] += 1
try:
ref_dur = max(dur_dict, key=dur_dict.get)
except:
pass # use last ref_dur
if i == 0:
prefix_left_barline = line.split('[V:')[0]
else:
prefix_left_barline = ''
for symbol in part_symbol_list:
if symbol in line_bar_dict.keys():
symbol_bartext = line_bar_dict[symbol]
else:
if symbol in z_symbol_list:
symbol_bartext = prefix_left_barline + 'z' + str(ref_dur) + right_barline
elif symbol in x_symbol_list:
symbol_bartext = prefix_left_barline + 'x' + str(ref_dur) + right_barline
unreduced_line += '[' + symbol + ']' + symbol_bartext
unreduced_tunebody_lines.append(unreduced_line + '\n')
unreduced_lines = metadata_lines + unreduced_tunebody_lines
return unreduced_lines
def wait_for_file(self, file_path, timeout=15, check_interval=0.3):
"""Wait for file generation to complete"""
start_time = time.time()
while time.time() - start_time < timeout:
if os.path.exists(file_path):
# 对于MP3文件,检查文件大小是否不再变化
if file_path.endswith('.mp3'):
initial_size = os.path.getsize(file_path)
time.sleep(check_interval)
if os.path.getsize(file_path) == initial_size:
return True
else:
return True
time.sleep(check_interval)
return False
def wait_for_png_sequence(self, base_path, timeout=15, check_interval=0.3):
"""Wait for PNG sequence generation to complete"""
import glob
start_time = time.time()
last_count = 0
stable_count = 0
while time.time() - start_time < timeout:
current_files = glob.glob(f"{base_path}-*.png")
current_count = len(current_files)
if current_count > 0:
if current_count == last_count:
stable_count += 1
if stable_count >= 3: # 连续3次检查文件数量不变
return sorted(current_files)
else:
stable_count = 0
last_count = current_count
time.sleep(check_interval)
return None
def xml2mp3(self, xml_path, musescore4_path):
import subprocess
import sys
import tempfile
mp3_path = xml_path.rsplit(".", 1)[0] + ".mp3"
# 检测操作系统是否为 Linux
if sys.platform == "linux":
try:
# 使用不同的显示端口
display_number = 100
os.environ["DISPLAY"] = f":{display_number}"
# 检查并清理旧的 Xvfb 锁文件
tmp_dir = tempfile.mkdtemp()
xvfb_lock_file = os.path.join(tmp_dir, f".X{display_number}-lock")
if os.path.exists(xvfb_lock_file):
print(f"清理旧的 Xvfb 锁文件: {xvfb_lock_file}")
os.remove(xvfb_lock_file)
# 杀死所有残留的 Xvfb 进程
subprocess.run(["pkill", "Xvfb"], stderr=subprocess.DEVNULL) # 忽略错误
time.sleep(1) # 等待进程终止
# 启动 Xvfb
xvfb_process = subprocess.Popen(["Xvfb", f":{display_number}", "-screen", "0", "1024x768x24"])
time.sleep(2) # 等待 Xvfb 启动
# 设置 Qt 插件环境变量
os.environ["QT_QPA_PLATFORM"] = "offscreen"
# 运行 mscore 命令
subprocess.run(
[musescore4_path, '-o', mp3_path, xml_path],
check=True,
capture_output=True,
)
# 等待MP3文件生成完成
if self.wait_for_file(mp3_path):
print(f"Conversion to {mp3_path} completed")
return mp3_path
else:
print("MP3 conversion timeout")
return None
except subprocess.CalledProcessError as e:
print(f"Conversion failed: {e.stderr}" if e.stderr else "Unknown error")
return None
finally:
# 关闭 Xvfb
xvfb_process.terminate()
xvfb_process.wait()
else:
try:
subprocess.run(
[musescore4_path, '-o', mp3_path, xml_path],
check=True,
capture_output=True,
)
# 等待MP3文件生成完成
if self.wait_for_file(mp3_path):
print(f"Conversion to {mp3_path} completed")
return mp3_path
else:
print("MP3 conversion timeout")
return None
except subprocess.CalledProcessError as e:
print(f"Conversion failed: {e.stderr}" if e.stderr else "Unknown error")
return None
def xml2png(self, xml_path, musescore4_path):
import subprocess
import sys
import tempfile
base_png_path = xml_path.rsplit(".", 1)[0]
# 检测操作系统是否为 Linux
if sys.platform == "linux":
try:
# 使用不同的显示端口
display_number = 100
os.environ["DISPLAY"] = f":{display_number}"
# 检查并清理旧的 Xvfb 锁文件
tmp_dir = tempfile.mkdtemp()
xvfb_lock_file = os.path.join(tmp_dir, f".X{display_number}-lock")
if os.path.exists(xvfb_lock_file):
print(f"清理旧的 Xvfb 锁文件: {xvfb_lock_file}")
os.remove(xvfb_lock_file)
# 杀死所有残留的 Xvfb 进程
subprocess.run(["pkill", "Xvfb"], stderr=subprocess.DEVNULL) # 忽略错误
time.sleep(1) # 等待进程终止
# 启动 Xvfb
xvfb_process = subprocess.Popen(["Xvfb", f":{display_number}", "-screen", "0", "1024x768x24"])
time.sleep(2) # 等待 Xvfb 启动
# 设置 Qt 插件环境变量
os.environ["QT_QPA_PLATFORM"] = "offscreen"
# 运行 mscore 命令
subprocess.run(
[musescore4_path, '-o', f"{base_png_path}.png", xml_path],
check=True,
capture_output=True,
)
# 等待PNG序列生成完成
png_files = self.wait_for_png_sequence(base_png_path)
if png_files:
print(f"Converted to {len(png_files)} PNG files")
return png_files
else:
print("PNG conversion timeout")
return None
except subprocess.CalledProcessError as e:
print(f"Conversion failed: {e.stderr}" if e.stderr else "Unknown error")
return None
finally:
# 关闭 Xvfb
xvfb_process.terminate()
xvfb_process.wait()
else:
try:
subprocess.run(
[musescore4_path, '-o', f"{base_png_path}.png", xml_path],
check=True,
capture_output=True,
)
# 等待PNG序列生成完成
png_files = self.wait_for_png_sequence(base_png_path)
if png_files:
print(f"Converted to {len(png_files)} PNG files")
return png_files
else:
print("PNG conversion timeout")
return None
except subprocess.CalledProcessError as e:
print(f"Conversion failed: {e.stderr}" if e.stderr else "Unknown error")
return None
def abc2xml(self, abc_path, output_dir, python_path):
import subprocess
xml_path = abc_path.rsplit(".", 1)[0] + ".xml"
try:
subprocess.run(
[python_path, f"{self.node_dir}/abc2xml.py", '-o', output_dir, abc_path, ],
check=True,
capture_output=True,
)
print(f"Conversion to {xml_path}",)
return xml_path
except subprocess.CalledProcessError as e:
print(f"Conversion failed: {e.stderr}" if e.stderr else "Unknown error")
return None
NODE_CLASS_MAPPINGS = {
"NotaGenRun": NotaGenRun,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"NotaGenRun": "NotaGen Run",
}