-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
443 lines (364 loc) · 17.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import torch
import random
import bisect
# import json
import re
from .config import nota_lx, nota_small, nota_medium
from transformers import GPT2Model, GPT2LMHeadModel, PreTrainedModel
from samplings import top_p_sampling, top_k_sampling, temperature_sampling
# from tokenizers import Tokenizer
class Patchilizer:
def __init__(self, model):
if model == "notagenx.pth" or model == "notagen_large.pth":
cf = nota_lx
elif model == "notagen_small.pth":
cf = nota_small
elif model == "notagen_medium.pth":
cf = nota_medium
self.stream = cf["PATCH_STREAM"]
self.patch_size = cf["PATCH_SIZE"]
self.patch_length = cf["PATCH_LENGTH"]
# self.char_num_layers = cf["CHAR_NUM_LAYERS"]
# self.patch_num_layers = cf["PATCH_NUM_LAYERS"]
# self.hidden_size = cf["HIDDEN_SIZE"]
# self.psbs = cf["PATCH_SAMPLING_BATCH_SIZE"]
self.delimiters = ["|:", "::", ":|", "[|", "||", "|]", "|"]
self.regexPattern = '(' + '|'.join(map(re.escape, self.delimiters)) + ')'
self.bos_token_id = 1
self.eos_token_id = 2
self.special_token_id = 0
def split_bars(self, body_lines):
"""
Split a body of music into individual bars.
"""
new_bars = []
try:
for line in body_lines:
line_bars = re.split(self.regexPattern, line)
line_bars = list(filter(None, line_bars))
new_line_bars = []
if len(line_bars) == 1:
new_line_bars = line_bars
else:
if line_bars[0] in self.delimiters:
new_line_bars = [line_bars[i] + line_bars[i + 1] for i in range(0, len(line_bars), 2)]
else:
new_line_bars = [line_bars[0]] + [line_bars[i] + line_bars[i + 1] for i in range(1, len(line_bars), 2)]
if 'V' not in new_line_bars[-1]:
new_line_bars[-2] += new_line_bars[-1] # 吸收最后一个 小节线+\n 的组合
new_line_bars = new_line_bars[:-1]
new_bars += new_line_bars
except:
pass
return new_bars
def split_patches(self, abc_text, generate_last=False):
if not generate_last and len(abc_text) % self.patch_size != 0:
abc_text += chr(self.eos_token_id)
patches = [abc_text[i : i + self.patch_size] for i in range(0, len(abc_text), self.patch_size)]
return patches
def patch2chars(self, patch):
"""
Convert a patch into a bar.
"""
bytes = ''
for idx in patch:
if idx == self.eos_token_id:
break
if idx < self.eos_token_id:
pass
bytes += chr(idx)
return bytes
def patchilize_metadata(self, metadata_lines):
metadata_patches = []
for line in metadata_lines:
metadata_patches += self.split_patches(line)
return metadata_patches
def patchilize_tunebody(self, tunebody_lines, encode_mode='train'):
tunebody_patches = []
bars = self.split_bars(tunebody_lines)
if encode_mode == 'train':
for bar in bars:
tunebody_patches += self.split_patches(bar)
elif encode_mode == 'generate':
for bar in bars[:-1]:
tunebody_patches += self.split_patches(bar)
tunebody_patches += self.split_patches(bars[-1], generate_last=True)
return tunebody_patches
def encode_train(self, abc_text, add_special_patches=True, cut=True):
lines = abc_text.split('\n')
lines = list(filter(None, lines))
lines = [line + '\n' for line in lines]
tunebody_index = -1
for i, line in enumerate(lines):
if '[V:' in line:
tunebody_index = i
break
metadata_lines = lines[ : tunebody_index]
tunebody_lines = lines[tunebody_index : ]
if self.stream:
tunebody_lines = ['[r:' + str(line_index) + '/' + str(len(tunebody_lines) - line_index - 1) + ']' + line for line_index, line in
enumerate(tunebody_lines)]
metadata_patches = self.patchilize_metadata(metadata_lines)
tunebody_patches = self.patchilize_tunebody(tunebody_lines, encode_mode='train')
if add_special_patches:
bos_patch = chr(self.bos_token_id) * (self.patch_size - 1) + chr(self.eos_token_id)
eos_patch = chr(self.bos_token_id) + chr(self.eos_token_id) * (self.patch_size - 1)
metadata_patches = [bos_patch] + metadata_patches
tunebody_patches = tunebody_patches + [eos_patch]
if self.stream:
if len(metadata_patches) + len(tunebody_patches) > self.patch_length:
available_cut_indexes = [0] + [index + 1 for index, patch in enumerate(tunebody_patches) if '\n' in patch]
line_index_for_cut_index = list(range(len(available_cut_indexes)))
end_index = len(metadata_patches) + len(tunebody_patches) - self.patch_length
biggest_index = bisect.bisect_left(available_cut_indexes, end_index)
available_cut_indexes = available_cut_indexes[:biggest_index + 1]
if len(available_cut_indexes) == 1:
choices = ['head']
elif len(available_cut_indexes) == 2:
choices = ['head', 'tail']
else:
choices = ['head', 'tail', 'middle']
choice = random.choice(choices)
if choice == 'head':
patches = metadata_patches + tunebody_patches[0:]
else:
if choice == 'tail':
cut_index = len(available_cut_indexes) - 1
else:
cut_index = random.choice(range(1, len(available_cut_indexes) - 1))
line_index = line_index_for_cut_index[cut_index]
stream_tunebody_lines = tunebody_lines[line_index : ]
stream_tunebody_patches = self.patchilize_tunebody(stream_tunebody_lines, encode_mode='train')
if add_special_patches:
stream_tunebody_patches = stream_tunebody_patches + [eos_patch]
patches = metadata_patches + stream_tunebody_patches
else:
patches = metadata_patches + tunebody_patches
else:
patches = metadata_patches + tunebody_patches
if cut:
patches = patches[ : self.patch_length]
else:
pass
# encode to ids
id_patches = []
for patch in patches:
id_patch = [ord(c) for c in patch] + [self.special_token_id] * (self.patch_size - len(patch))
id_patches.append(id_patch)
return id_patches
def encode_generate(self, abc_code, add_special_patches=True):
lines = abc_code.split('\n')
lines = list(filter(None, lines))
tunebody_index = None
for i, line in enumerate(lines):
if line.startswith('[V:') or line.startswith('[r:'):
tunebody_index = i
break
metadata_lines = lines[ : tunebody_index]
tunebody_lines = lines[tunebody_index : ]
metadata_lines = [line + '\n' for line in metadata_lines]
if self.stream:
if not abc_code.endswith('\n'):
tunebody_lines = [tunebody_lines[i] + '\n' for i in range(len(tunebody_lines) - 1)] + [tunebody_lines[-1]]
else:
tunebody_lines = [tunebody_lines[i] + '\n' for i in range(len(tunebody_lines))]
else:
tunebody_lines = [line + '\n' for line in tunebody_lines]
metadata_patches = self.patchilize_metadata(metadata_lines)
tunebody_patches = self.patchilize_tunebody(tunebody_lines, encode_mode='generate')
if add_special_patches:
bos_patch = chr(self.bos_token_id) * (self.patch_size - 1) + chr(self.eos_token_id)
metadata_patches = [bos_patch] + metadata_patches
patches = metadata_patches + tunebody_patches
patches = patches[ : self.patch_length]
# encode to ids
id_patches = []
for patch in patches:
if len(patch) < self.patch_size and patch[-1] != chr(self.eos_token_id):
id_patch = [ord(c) for c in patch]
else:
id_patch = [ord(c) for c in patch] + [self.special_token_id] * (self.patch_size - len(patch))
id_patches.append(id_patch)
return id_patches
def decode(self, patches):
"""
Decode patches into music.
"""
return ''.join(self.patch2chars(patch) for patch in patches)
class PatchLevelDecoder(PreTrainedModel):
"""
A Patch-level Decoder model for generating patch features in an auto-regressive manner.
It inherits PreTrainedModel from transformers.
"""
def __init__(self, config, model):
if model == "notagenx.pth" or model == "notagen_large.pth":
cf = nota_lx
elif model == "notagen_small.pth":
cf = nota_small
elif model == "notagen_medium.pth":
cf = nota_medium
self.patch_size = cf["PATCH_SIZE"]
super().__init__(config)
self.patch_embedding = torch.nn.Linear(self.patch_size * 128, config.n_embd)
torch.nn.init.normal_(self.patch_embedding.weight, std=0.02)
self.base = GPT2Model(config)
def forward(self,
patches: torch.Tensor,
masks=None) -> torch.Tensor:
"""
The forward pass of the patch-level decoder model.
:param patches: the patches to be encoded
:param masks: the masks for the patches
:return: the encoded patches
"""
patches = torch.nn.functional.one_hot(patches, num_classes=128).to(self.dtype)
patches = patches.reshape(len(patches), -1, self.patch_size * (128))
patches = self.patch_embedding(patches.to(self.device))
if masks==None:
return self.base(inputs_embeds=patches)
else:
return self.base(inputs_embeds=patches,
attention_mask=masks)
class CharLevelDecoder(PreTrainedModel):
"""
A Char-level Decoder model for generating the chars within each patch in an auto-regressive manner
based on the encoded patch features. It inherits PreTrainedModel from transformers.
"""
def __init__(self, config, model):
super().__init__(config)
self.special_token_id = 0
self.bos_token_id = 1
self.base = GPT2LMHeadModel(config)
if model == "notagenx.pth" or model == "notagen_large.pth":
cf = nota_lx
elif model == "notagen_small.pth":
cf = nota_small
elif model == "notagen_medium.pth":
cf = nota_medium
self.psbs = cf["PATCH_SAMPLING_BATCH_SIZE"]
def forward(self,
encoded_patches: torch.Tensor,
target_patches: torch.Tensor):
"""
The forward pass of the char-level decoder model.
:param encoded_patches: the encoded patches
:param target_patches: the target patches
:return: the output of the model
"""
# preparing the labels for model training
target_patches = torch.cat((torch.ones_like(target_patches[:,0:1])*self.bos_token_id, target_patches), dim=1)
# print('target_patches shape:', target_patches.shape)
target_masks = target_patches == self.special_token_id
labels = target_patches.clone().masked_fill_(target_masks, -100)
# masking the labels for model training
target_masks = torch.ones_like(labels)
target_masks = target_masks.masked_fill_(labels == -100, 0)
# select patches
if self.psbs != 0 and self.psbs < target_patches.shape[0]:
indices = list(range(len(target_patches)))
random.shuffle(indices)
selected_indices = sorted(indices[:self.psbs])
target_patches = target_patches[selected_indices,:]
target_masks = target_masks[selected_indices,:]
encoded_patches = encoded_patches[selected_indices,:]
# get input embeddings
inputs_embeds = torch.nn.functional.embedding(target_patches, self.base.transformer.wte.weight)
# concatenate the encoded patches with the input embeddings
inputs_embeds = torch.cat((encoded_patches.unsqueeze(1), inputs_embeds[:,1:,:]), dim=1)
output = self.base(inputs_embeds=inputs_embeds,
attention_mask=target_masks,
labels=labels)
# output_hidden_states=True=True)
return output
def generate(self,
encoded_patch: torch.Tensor, # [hidden_size]
tokens: torch.Tensor): # [1]
"""
The generate function for generating a patch based on the encoded patch and already generated tokens.
:param encoded_patch: the encoded patch
:param tokens: already generated tokens in the patch
:return: the probability distribution of next token
"""
encoded_patch = encoded_patch.reshape(1, 1, -1) # [1, 1, hidden_size]
tokens = tokens.reshape(1, -1)
# Get input embeddings
tokens = torch.nn.functional.embedding(tokens, self.base.transformer.wte.weight)
# Concatenate the encoded patch with the input embeddings
tokens = torch.cat((encoded_patch, tokens[:,1:,:]), dim=1)
# Get output from model
outputs = self.base(inputs_embeds=tokens)
# Get probabilities of next token
probs = torch.nn.functional.softmax(outputs.logits.squeeze(0)[-1], dim=-1)
return probs
class NotaGenLMHeadModel(PreTrainedModel):
"""
NotaGen is a language model with a hierarchical structure.
It includes a patch-level decoder and a char-level decoder.
The patch-level decoder is used to generate patch features in an auto-regressive manner.
The char-level decoder is used to generate the chars within each patch in an auto-regressive manner.
It inherits PreTrainedModel from transformers.
"""
def __init__(self, encoder_config, decoder_config, model):
super().__init__(encoder_config)
self.special_token_id = 0
self.bos_token_id = 1
self.eos_token_id = 2
self.patch_level_decoder = PatchLevelDecoder(encoder_config, model)
self.char_level_decoder = CharLevelDecoder(decoder_config, model)
if model == "notagenx.pth" or model == "notagen_large.pth":
cf = nota_lx
elif model == "notagen_small.pth":
cf = nota_small
elif model == "notagen_medium.pth":
cf = nota_medium
self.patch_size = cf["PATCH_SIZE"]
def forward(self,
patches: torch.Tensor,
masks: torch.Tensor):
"""
The forward pass of the bGPT model.
:param patches: the patches to be encoded
:param masks: the masks for the patches
:return: the decoded patches
"""
patches = patches.reshape(len(patches), -1, self.patch_size)
encoded_patches = self.patch_level_decoder(patches, masks)["last_hidden_state"]
left_shift_masks = masks * (masks.flip(1).cumsum(1).flip(1) > 1)
masks[:, 0] = 0
encoded_patches = encoded_patches[left_shift_masks == 1]
patches = patches[masks == 1]
return self.char_level_decoder(encoded_patches, patches)
def generate(self,
patches: torch.Tensor,
top_k=0,
top_p=1,
temperature=1.0):
"""
The generate function for generating patches based on patches.
:param patches: the patches to be encoded
:param top_k: the top k for sampling
:param top_p: the top p for sampling
:param temperature: the temperature for sampling
:return: the generated patches
"""
if patches.shape[-1] % self.patch_size != 0:
tokens = patches[:,:,-(patches.shape[-1]%self.patch_size):].squeeze(0, 1)
tokens = torch.cat((torch.tensor([self.bos_token_id], device=self.device), tokens), dim=-1)
patches = patches[:,:,:-(patches.shape[-1]%self.patch_size)]
else:
tokens = torch.tensor([self.bos_token_id], device=self.device)
patches = patches.reshape(len(patches), -1, self.patch_size) # [bs, seq, patch_size]
encoded_patches = self.patch_level_decoder(patches)["last_hidden_state"] # [bs, seq, hidden_size]
generated_patch = []
while True:
prob = self.char_level_decoder.generate(encoded_patches[0][-1], tokens).cpu().detach().numpy() # [128]
prob = top_k_sampling(prob, top_k=top_k, return_probs=True) # [128]
prob = top_p_sampling(prob, top_p=top_p, return_probs=True) # [128]
token = temperature_sampling(prob, temperature=temperature) # int
char = chr(token)
generated_patch.append(token)
if len(tokens) >= self.patch_size:# or token == self.eos_token_id:
break
else:
tokens = torch.cat((tokens, torch.tensor([token], device=self.device)), dim=0)
return generated_patch