-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathstage2.py
361 lines (292 loc) · 14.9 KB
/
stage2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import torch
torch.multiprocessing.set_sharing_strategy('file_system')
import torch.nn.parallel
import torch.optim
import torch.nn.functional as F
from ops.dataset import TSNDataSet
from ops.transforms import *
from ops import dataset_config
from ops.utils import AverageMeter, accuracy, ProgressMeter
from models.gfv_net import GFV
from basic_tools.checkpoint import save_checkpoint
import os
import time
import hydra
import shutil
import basic_tools
from collections import OrderedDict
def parse_gpus(gpus):
if type(gpus) is int:
return [gpus]
gpu_list = gpus.split('-')
return [int(g) for g in gpu_list]
@hydra.main(config_path="conf", config_name="stage2.yaml")
def main(args):
assert args.train_stage == 2, "This code is only used for stage-2 training (only train ppo)!"
config_yaml = basic_tools.start(args)
with open('training.log', 'a+') as f_handler:
f_handler.writelines(config_yaml)
best_acc1 = 0
num_class, args.train_list, args.val_list, args.root_path, prefix = \
dataset_config.return_dataset(args.dataset, modality='RGB', root_dataset=args.data_dir)
args.num_classes = num_class
model = GFV(args).cuda()
if args.pretrained_glancer:
pretrained_ckpt = torch.load(os.path.expanduser(args.pretrained_glancer), map_location='cpu')
new_state_dict = OrderedDict()
for k, v in pretrained_ckpt['state_dict'].items():
if k[:18] == 'module.base_model.':
name = k[18:] # remove `module.`
new_state_dict[name] = v
elif k[:14] == 'module.new_fc.':
name = 'classifier.' + k[14:] # replace `module.new_fc` with 'classifier'
new_state_dict[name] = v
else:
new_state_dict[k] = v
model.glancer.net.load_state_dict(new_state_dict, strict=True)
print('Load Pretrained Glancer from {}!'.format(args.pretrained_glancer))
with open('training.log', 'a+') as f_handler:
f_handler.writelines('Load Pretrained Glancer from {}!'.format(args.pretrained_glancer))
if args.pretrained_focuser:
pretrained_ckpt = torch.load(os.path.expanduser(args.pretrained_focuser), map_location='cpu')
new_state_dict = OrderedDict()
new_fc_state_ditc = OrderedDict()
for k, v in pretrained_ckpt['state_dict'].items():
print('Load ckpt param: {}'.format(k))
if k[:7] == 'module.' and 'new_fc' not in k:
name = k[7:] # remove `module.`
new_state_dict[name] = v
elif 'module.new_fc.' in k:
name = k[14:] # remove `module.`
new_fc_state_ditc[name] = v
else:
new_state_dict[k] = v
model.classifier.load_state_dict(new_fc_state_ditc, strict=True)
model.focuser.net.load_state_dict(new_state_dict, strict=False)
print('Load Pretrained Focuser from {}!'.format(args.pretrained_focuser))
with open('training.log', 'a+') as f_handler:
f_handler.writelines('Load Pretrained Focuser from {}!'.format(args.pretrained_focuser))
model.focuser.net.base_model = torch.nn.Sequential(*list(model.focuser.net.base_model.children())[:-1])
print(model)
print(model.focuser.policy.policy)
with open('training.log', 'a+') as f_handler:
f_handler.writelines('model: {}'.format(model))
f_handler.writelines('policy net: {}'.format(model.focuser.policy.policy))
scale_size = model.scale_size
crop_size = model.crop_size
input_mean = model.input_mean
input_std = model.input_std
train_augmentation = model.get_augmentation(flip=False if 'something' in args.dataset
or 'jester' in args.dataset else True)
# data loading code
normalize = GroupNormalize(input_mean, input_std)
train_loader = torch.utils.data.DataLoader(
TSNDataSet(args.root_path, args.train_list,
num_segments_glancer=args.num_segments_glancer,
num_segments_focuser=args.num_segments_focuser,
new_length=1,
modality='RGB',
image_tmpl=prefix,
transform=torchvision.transforms.Compose([
train_augmentation,
Stack(roll=False),
ToTorchFormatTensor(div=True),
normalize,
]), dense_sample=args.dense_sample),
batch_size=args.batch_size, shuffle=True, num_workers=args.workers,
pin_memory=False, drop_last=True)
val_loader = torch.utils.data.DataLoader(
TSNDataSet(args.root_path, args.val_list,
num_segments_glancer=args.num_segments_glancer,
num_segments_focuser=args.num_segments_focuser,
new_length=1,
modality='RGB',
image_tmpl=prefix,
random_shift=False,
transform=torchvision.transforms.Compose([
GroupScale(int(scale_size)),
GroupCenterCrop(crop_size),
Stack(roll=False),
ToTorchFormatTensor(div=True),
normalize,
]), dense_sample=args.dense_sample),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=False)
criterion = torch.nn.CrossEntropyLoss().cuda()
if args.pretrained:
pretrained_ckpt = torch.load(os.path.expanduser(args.pretrained))
start_epoch = pretrained_ckpt['epoch']
print('Load pretrained ckpt from: {}'.format(os.path.expanduser(args.pretrained)))
print('Load pretrained ckpt from epoch: {}'.format(start_epoch))
model.glancer.load_state_dict(pretrained_ckpt['glancer'], strict=True)
model.focuser.load_state_dict(pretrained_ckpt['focuser'], strict=True)
model.classifier.load_state_dict(pretrained_ckpt['fc'], strict=True)
ckpt_acc1 = pretrained_ckpt['best_acc']
print('best ckpt_acc1 for ckpt: {}'.format(ckpt_acc1))
with open('training.log', 'a+') as f_handler:
f_handler.writelines('Load pretrained ckpt from: {}'.format(os.path.expanduser(args.pretrained)))
f_handler.writelines('Load pretrained ckpt from epoch: {}'.format(start_epoch))
f_handler.writelines('best ckpt_acc1 for ckpt: {}'.format(ckpt_acc1))
if args.resume:
resume_ckpt = torch.load(os.path.expanduser(args.resume))
start_epoch = resume_ckpt['epoch']
print('resume from epoch: {}'.format(start_epoch))
model.glancer.load_state_dict(resume_ckpt['glancer'], strict=True)
model.focuser.load_state_dict(resume_ckpt['focuser'], strict=True)
model.classifier.load_state_dict(resume_ckpt['fc'], strict=True)
model.focuser.policy.policy.load_state_dict(resume_ckpt['policy'])
model.focuser.policy.policy_old.load_state_dict(resume_ckpt['policy'])
best_acc1 = resume_ckpt['best_acc']
print('best acc1 for ckpt: {}'.format(best_acc1))
with open('training.log', 'a+') as f_handler:
f_handler.writelines('Resume from: {}'.format(os.path.expanduser(args.resume)))
f_handler.writelines('Resume from epoch: {}'.format(start_epoch))
f_handler.writelines('best_acc1 for resume: {}'.format(best_acc1))
else:
start_epoch = 0
if args.evaluate:
acc1, val_logs = validate(val_loader, model, criterion, args)
with open('training.log', 'a+') as f_handler:
f_handler.writelines(val_logs)
print('Best Acc@1 = {}'.format(acc1))
return
for epoch in range(start_epoch, args.epochs + 1):
acc1 = 0
train_logs = train(train_loader, model, criterion, epoch, args)
acc1, val_logs = validate(val_loader, model, criterion, args)
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
save_checkpoint({
'epoch': epoch + 1,
'model_state_dict': model.state_dict(),
'glancer': model.glancer.state_dict(),
'focuser': model.focuser.state_dict(),
'fc': model.classifier.state_dict(),
'policy': model.focuser.policy.policy.state_dict(),
'acc': acc1,
'best_acc': best_acc1})
if is_best:
shutil.copyfile('checkpoint.pth.tar', 'checkpoint.pth.tar'.replace('checkpoint', 'model_best'))
with open('training.log', 'a+') as f_handler:
f_handler.writelines(train_logs)
if epoch < 40:
if epoch % args.eval_freq == 0:
f_handler.writelines(val_logs)
else:
f_handler.writelines(val_logs)
def train(train_loader, model: GFV, criterion, epoch, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
reward_list = [AverageMeter('Rew', ':6.5f') for _ in range(args.video_div)]
progress = ProgressMeter(len(train_loader), batch_time, data_time, losses, top1, top5,
prefix="Epoch: [{}]".format(epoch))
logs = []
model.eval()
model.focuser.policy.policy.train()
model.focuser.policy.policy_old.train()
end = time.time()
all_targets = []
for i, (glancer_images, focuser_images, target) in enumerate(train_loader):
# data preparation
_b = target.shape[0]
all_targets.append(target)
data_time.update(time.time() - end)
glancer_images = glancer_images.cuda() # images (B, T * C, H, W)
focuser_images = focuser_images.cuda() # images (B, T * C, H, W)
target = target.cuda()
glancer_images = torch.nn.functional.interpolate(glancer_images, (args.glance_size, args.glance_size))
glancer_images = glancer_images.cuda()
confidence_last = 0
focuser_images = focuser_images.view(_b, args.num_segments_focuser, 3, model.input_size, model.input_size)
# Glancer: output global feature
with torch.no_grad():
global_feat_map, global_feat_logit = model.glance(
glancer_images) # feat_map (B, T, C, H, W) feat_vec (B, T, _)
local_patch_list = []
for focus_time_step in range(args.video_div):
pred, baseline_logit, local_patch = model.action_stage2(
focuser_images, global_feat_map, global_feat_logit, focus_time_step, args,
prev_local_patch=None if focus_time_step == 0 else local_patch_list[focus_time_step - 1], training=True)
local_patch_list.append(local_patch)
loss = criterion(pred, target)
confidence = torch.gather(F.softmax(pred.detach(), 1), dim=1, index=target.view(-1, 1)).view(1, -1)
bsl_confidence = torch.gather(F.softmax(baseline_logit.detach(), 1), dim=1,
index=target.view(-1, 1)).view(1, -1)
reward = confidence - bsl_confidence
reward_list[focus_time_step].update(reward.data.mean().item(), glancer_images.size(0))
model.focuser.memory.rewards.append(reward)
model.focuser.update()
# Update evaluation metrics
acc1, acc5 = accuracy(pred, target, topk=(1, 5))
losses.update(loss.item(), glancer_images.size(0))
top1.update(acc1[0], glancer_images.size(0))
top5.update(acc5[0], glancer_images.size(0))
batch_time.update(time.time() - end)
end = time.time()
_reward = [reward.avg for reward in reward_list]
print('reward of each step: {}'.format(_reward))
logs.append(progress.print(i))
logs.append(' '.join(map(str, _reward)) + '\n')
return logs
def validate(val_loader, model, criterion, args):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
reward_list = [AverageMeter('Rew', ':6.5f') for _ in range(args.video_div)]
progress = ProgressMeter(len(val_loader), batch_time, losses, top1, top5, prefix='Test: ')
logs = []
# switch to evaluate mode
model.eval()
model.focuser.policy.policy.eval()
model.focuser.policy.policy_old.eval()
all_targets = []
with torch.no_grad():
end = time.time()
for i, (glancer_images, focuser_images, target) in enumerate(val_loader):
_b = target.shape[0]
all_targets.append(target)
glancer_images = glancer_images.cuda()
focuser_images = focuser_images.cuda()
target = target.cuda()
glancer_images = torch.nn.functional.interpolate(glancer_images, (args.glance_size, args.glance_size))
glancer_images = glancer_images.cuda()
# compute output
focuser_images = focuser_images.view(_b, args.num_segments_focuser, 3, model.input_size, model.input_size)
# MDP Focusing
with torch.no_grad():
global_feat_map, global_feat_logit = model.glance(
glancer_images) # feat_map (B, T, C, H, W) feat_vec (B, T, _)
for focus_time_step in range(args.video_div):
pred, baseline_logit, local_patch = model.action_stage2(
focuser_images, global_feat_map, global_feat_logit, focus_time_step, args,
prev_local_patch=None if focus_time_step == 0 else local_patch, training=False)
loss = criterion(pred, target)
confidence = torch.gather(F.softmax(pred.detach(), 1), dim=1, index=target.view(-1, 1)).view(1, -1)
bsl_confidence = torch.gather(F.softmax(baseline_logit.detach(), 1), dim=1,
index=target.view(-1, 1)).view(1, -1)
reward = confidence - bsl_confidence
reward_list[focus_time_step].update(reward.data.mean().item(), glancer_images.size(0))
# Update evaluation metrics
acc1, acc5 = accuracy(pred, target, topk=(1, 5))
losses.update(loss.item(), glancer_images.size(0))
top1.update(acc1[0], glancer_images.size(0))
top5.update(acc5[0], glancer_images.size(0))
batch_time.update(time.time() - end)
end = time.time()
_reward = [reward.avg for reward in reward_list]
print('reward of each step: {}'.format(_reward))
logs.append(progress.print(i))
logs.append(' '.join(map(str, _reward)) + '\n')
return top1.avg, logs
def save_model(prefix, model, i):
filename = os.path.join(os.getcwd(), f"{prefix}-{i}.pt")
torch.save(model, filename)
print(f"[{i}] Saving {prefix} to {filename}")
if __name__ == "__main__":
# os.environ["CUDA_VISIBLE_DEVICES"]="9" # specify which GPU(s) to be used
main()