-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathmapping.json
8548 lines (8548 loc) · 861 KB
/
mapping.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
[
{
"name": "Anomaly_Detection",
"image": "https://cdn.siberian.dev/code-gen/anomaly_detection_blue.png",
"description": "technique of identifying rare events or observations which can raise suspicions by being statistically different from the rest of the observations.",
"models": [
{
"name": "Angle_Based_Outlier_Detector",
"models": [
{
"name": "ABOD.ipynb",
"title": "Angle Based Outlier Detection",
"description": "Anomaly detection using the Angle Based Outlier Detector(ABOD) Algorithm implemented using the pyod library in python.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Angle_Based_Outlier_Detector/ABOD.ipynb",
"keywords": "abod,anomaly detection, angle based detection outlier,pyod,pyod library,lof,local outlier factor,ai template",
"display_url": "https://siberian.dev/anomaly-detection/abod"
},
{
"name": "ABOD_MinMaxScaler.ipynb",
"title": "Angle-Based Outlier Detection With MinMaxScaler",
"description": "Angle based Outlier Detection (ABOD) Algorithm for Anomaly Detection along with MinMaxScaler as the Data scaling technique.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Angle_Based_Outlier_Detector/ABOD_MinMaxScaler.ipynb",
"keywords": "abod,anomaly detection, angle based detection outlier,pyod,pyod library,lof,local outlier factor,minmaxscaler,normalization,ai template",
"display_url": "https://siberian.dev/anomaly-detection/abod-minmaxscaler"
},
{
"name": "ABOD_RobustScaler.ipynb",
"title": "Angle-Based Outlier Detection With RobustScaler",
"description": "Anomaly/Outlier Detection using the Angle based Outlier Detector(ABOD) Algorithm. The implementation also uses Robust Scaler from the sci-kit learn library as the feature rescaling technique.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Angle_Based_Outlier_Detector/ABOD_RobustScaler.ipynb",
"keywords": "abod,anomaly detection, angle based detection outlier,pyod,pyod library,lof,local outlier factor,robustscaler,ai template",
"display_url": "https://siberian.dev/anomaly-detection/abod-robustscaler"
}
]
},
{
"name": "Auto_Encoder",
"models": [
{
"name": "AutoEncoder.ipynb",
"title": "Autoencoder",
"description": "Anomaly detection using the Auto Encoder Algorithm. The pyod library's python implementation of Auto Encoder uses Neural Network Architecture for Anomaly or outlier detection.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Auto_Encoder/AutoEncoder.ipynb",
"keywords": "autoencoder,pyod,artifical neural network,autoencoder keras,autoencoder alogorithm,autoecnoder neural network,ai template",
"display_url": "https://siberian.dev/anomaly-detection/autoencoder"
},
{
"name": "AutoEncoder_MaxAbsScaler.ipynb",
"title": "Autoencoder With MaxAbsScaler",
"description": "Anomaly detection/outlier analysis using the Auto Encoder Algorithm, along with data rescaling using MaxAbsScaler. MaxAbsScaler scale each feature by its maximum absolute value.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Auto_Encoder/AutoEncoder_MaxAbsScaler.ipynb",
"keywords": "autoencoder,pyod,artifical neural network,autoencoder keras,autoencoder alogorithm,autoecnoder neural network,maxabsscaler,ai template",
"display_url": "https://siberian.dev/anomaly-detection/autoencoder-maxabsscaler"
},
{
"name": "AutoEncoder_StandardScaler.ipynb",
"title": "Autoencoder With StandardScaler",
"description": "Outlier Analysis or anomaly detection using the Auto Encoder Architecture . This template utilizes Auto Encoder along with data rescaling using StandardScaler from the sci-kit learn library.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Auto_Encoder/AutoEncoder_StandardScaler.ipynb",
"keywords": "autoencoder,pyod,artifical neural network,autoencoder keras,autoencoder alogorithm,autoecnoder neural network,standardscaler,ai template",
"display_url": "https://siberian.dev/anomaly-detection/autoencoder-standardscaler"
}
]
},
{
"name": "Clustering_Based_Local_Outlier_Factor",
"models": [
{
"name": "CBLOF.ipynb",
"title": "Clustering Based Local Outlier Factor",
"description": "Anomaly detection or outlier analysis using the Clustering Based Local Outlier Factor(CBLOF) Algorithm implemented in pyod library for python .",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Clustering_Based_Local_Outlier_Factor/CBLOF.ipynb",
"keywords": "cblof,pyod library,local outlier factor,python,sklearn library,ai template",
"display_url": "https://siberian.dev/anomaly-detection/clustering-based-outlier-detection"
},
{
"name": "CBLOF_MinMaxScaler.ipynb",
"title": "Clustering Based Local Outlier Factor With MinMaxScaler",
"description": "Outlier analysis or Detection using the CBLOF(Clustering Based Local Outlier Factor Algorithm) and feature rescaling technique using MinMaxScaler.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Clustering_Based_Local_Outlier_Factor/CBLOF_MinMaxScaler.ipynb",
"keywords": "cblof,pyod library,local outlier factor,python,sklearn library,minmaxscaler,ai template",
"display_url": "https://siberian.dev/anomaly-detection/clustering-based-outlier-detection-minmaxscaler"
},
{
"name": "CBLOF_RobustScaler.ipynb",
"title": "Clustering Based Local Outlier Factor With RobustScaler",
"description": "Anomaly detection or outlier analysis using the Clustering Based Local Outlier Factor(CBLOF) Algorithm. The demonstration also illustrates data rescaling using RobustScaler.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Clustering_Based_Local_Outlier_Factor/CBLOF_RobustScaler.ipynb",
"keywords": "cblof,pyod library,local outlier factor,python,sklearn library,robustscaler,ai template",
"display_url": "https://siberian.dev/anomaly-detection/clustering-based-outlier-detection-robustscaler"
}
]
},
{
"name": "Copula_Based_Outlier_Detector",
"models": [
{
"name": "COPOD.ipynb",
"title": "Copula Based Outlier Detection",
"description": "Anomaly detection or outlier analysis using the Copula Based Outlier Detector(COPOD) Algorithm. COPOD is a parameter-free, highly interpretable outlier detection algorithm based on empirical copula models.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Copula_Based_Outlier_Detector/COPOD.ipynb",
"keywords": "copod,pyod,copula,ai template, copula model,python",
"display_url": "https://siberian.dev/anomaly-detection/copod"
},
{
"name": "COPOD_MaxAbsScaler.ipynb",
"title": "Copula Based Outlier Detection With MaxAbsScaler",
"description": "Anomaly detection/outlier analysis using the Copula Based Outlier Detector Algorithm based on empirical copula models. This python implementation utilizes the data rescaling technique using the MaxAbsScaler method from the sci-kit learn.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Copula_Based_Outlier_Detector/COPOD_MaxAbsScaler.ipynb",
"keywords": "copod,pyod,copula,ai template, copula model,python,maxabsscaler,pyod library",
"display_url": "https://siberian.dev/anomaly-detection/copod-maxabsscaler"
},
{
"name": "COPOD_RobustScaler.ipynb",
"title": "Copula Based Outlier Detection With RobustScaler",
"description": "Anomaly detection/outlier analysis using the Copula Based Outlier Detector(COPOD) Algorithm implemented using the pyod library along with feature scaling using RobustScalar, which scale features using statistics that are robust to outliers.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Copula_Based_Outlier_Detector/COPOD_RobustScaler.ipynb",
"keywords": "copod,pyod,copula,ai template, copula model,python,roubustscaler,pyod library",
"display_url": "https://siberian.dev/anomaly-detection/copod-robustscaler"
},
{
"name": "COPOD_StandardScaler.ipynb",
"title": "Copula Based Outlier Detection With StandardScaler",
"description": "Anomaly detection or outlier analysis using the Copula Based Outlier Detector(COPOD) Algorithm implementation of the pyod library. Along with it includes the feature scaling technique StandardScaler for data rescaling.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Copula_Based_Outlier_Detector/COPOD_StandardScaler.ipynb",
"keywords": "copod,pyod,copula,ai template, copula model,python,standardscaler,pyod library",
"display_url": "https://siberian.dev/anomaly-detection/copod-standardscaler"
}
]
},
{
"name": "Deep_One_Class_Classification",
"models": [
{
"name": "DeepSVDD.ipynb",
"title": "Deep One-Class Classification",
"description": "Anomaly detection using the DeepSVDD Algorithm implemented using the PyOd library. Deep One-Class Classifier with AutoEncoder (AE) is a type of neural network for learning useful data representations in an unsupervised way.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Deep_One_Class_Classification/DeepSVDD.ipynb",
"keywords": "deepsvdd,deep one-class classification,one-class classification,one-class svm,one-class neura network",
"display_url": "https://siberian.dev/anomaly-detection/deep-one-class-classification"
},
{
"name": "DeepSVDD_MaxAbsScaler.ipynb",
"title": "Deep One-Class Classification With MaxAbsScaler",
"description": "Anomaly detection using the DeepSVDD Algorithm implementation of the PyOd library. DeepSVDD trains a neural network while minimizing the volume of a hypersphere that encloses the network representations of the data, forcing the network to extract the common factors of variation. Along with the Data rescaling technique, MaxAbsScaler from sci-kit learn.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Deep_One_Class_Classification/DeepSVDD_MaxAbsScaler.ipynb",
"keywords": "deepsvdd,deep one-class classification,one-class classification,one-class svm,one-class neura network,maxabsscaler",
"display_url": "https://siberian.dev/anomaly-detection/deep-one-class-classification-maxabsscaler"
},
{
"name": "DeepSVDD_MinMaxScaler.ipynb",
"title": "Deep One-Class Classification With MinMaxScaler",
"description": "Anomaly detection/outlier analysis using the Deep One-Class Classification. This template utilizes feature scaling using MinMaxScaler. DeepSVDD detects outlying objects in the data by calculating the distance from the center.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Deep_One_Class_Classification/DeepSVDD_MinMaxScaler.ipynb",
"keywords": "deepsvdd,deep one-class classification,one-class classification,one-class svm,one-class neura network,minmaxscaler",
"display_url": "https://siberian.dev/anomaly-detection/deep-one-class-classification-minmaxscaler"
},
{
"name": "DeepSVDD_RobustScaler.ipynb",
"title": "Deep One-Class Classification With RobustScaler",
"description": "Anomaly detection using the DeepSVDD Algorithm implemented using the PyOd library, along with the data rescaling technique RobustScaler implemented in the sci-kit learn library.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Deep_One_Class_Classification/DeepSVDD_RobustScaler.ipynb",
"keywords": "deepsvdd,deep one-class classification,one-class classification,one-class svm,one-class neura network,robustscaler",
"display_url": "https://siberian.dev/anomaly-detection/deep-one-class-classification-robustscaler"
},
{
"name": "DeepSVDD_StandardScaler.ipynb",
"title": "Deep One-Class Classification With StandardScaler",
"description": "Anomaly detection/outlier analysis using the Deep One-Class Classification Algorithm implemented using PyOd library and feature scaling using StandardScaler, which Standardize features by removing the mean and scaling to unit variance.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Deep_One_Class_Classification/DeepSVDD_StandardScaler.ipynb",
"keywords": "deepsvdd,deep one-class classification,one-class classification,one-class svm,one-class neura network,standardscaler",
"display_url": "https://siberian.dev/anomaly-detection/deep-one-class-classification-standardscaler"
}
]
},
{
"name": "Histogram_Based_Outlier_Detector",
"models": [
{
"name": "HBOS.ipynb",
"title": "Histogram Based Outlier Detection",
"description": "Anomaly detection/outlier detection using the Histogram Based Outlier Detector(HBOS) Algorithm implemented using the pyod library in python.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Histogram_Based_Outlier_Detector/HBOS.ipynb",
"keywords": "histogram based outlier detection,anomaly detetcion,histogram outlier,hbos algorithm,ai template,pyod library",
"display_url": "https://siberian.dev/anomaly-detection/histogram-based-outlier-detection"
},
{
"name": "HBOS_MaxAbsScaler.ipynb",
"title": "Histogram Based Outlier Detection With MaxAbsScaler",
"description": "Anomaly detection using the Histogram Based Outlier Detector(HBOS) Algorithm implemented in the pyod library along with MaxAbsScaler as a data rescaling technique from sklearn.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Histogram_Based_Outlier_Detector/HBOS_MaxAbsScaler.ipynb",
"keywords": "histogram based outlier detection,anomaly detetcion,histogram outlier,hbos algorithm,ai template,maxabsscaler,pyod library",
"display_url": "https://siberian.dev/anomaly-detection/histogram-based-outlier-detection-maxabsscaler"
},
{
"name": "HBOS_RobustScaler.ipynb",
"title": "Histogram Based Outlier Detection With RobustScaler",
"description": "Anomaly detection/outlier analysis using the HBOS Algorithm implemented using the pyod library along with RobustScaler as a feature scaling technique.HBOS assumes feature independence and calculates the degree of outlyingness by building histograms.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Histogram_Based_Outlier_Detector/HBOS_RobustScaler.ipynb",
"keywords": "histogram based outlier detection,anomaly detetcion,histogram outlier,hbos algorithm,robust scaler,ai template",
"display_url": "https://siberian.dev/anomaly-detection/histogram-based-outlier-detection-robustscaler"
},
{
"name": "HBOS_StandardScaler.ipynb",
"title": "Histogram Based Outlier Detection With StandardScaler",
"description": "Outlier detection using the HBOS(Histogram Based Outlier Detection) Algorithm from the pyod library in python along with StandardScaler as a feature scaling technique.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Histogram_Based_Outlier_Detector/HBOS_StandardScaler.ipynb",
"keywords": "histogram based outlier detection,anomaly detetcion,histogram outlier,hbos algorithm,standard scaler,ai template",
"display_url": "https://siberian.dev/anomaly-detection/histogram-based-outlier-detection-standardscaler"
}
]
},
{
"name": "Isolation_Forest",
"models": [
{
"name": "IsolationForest.ipynb",
"title": "Isolation Forest",
"description": "Anomaly detection/outlier analysis using the Isolation Forest Algorithm. The IsolationForest isolates observations by randomly selecting a feature and then randomly selecting a split value between the maximum and minimum values of the selected feature.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Isolation_Forest/IsolationForest.ipynb",
"keywords": "isolation forest,isolation forest template,anomaly detection,isolation forest algorithm,pyod library",
"display_url": "https://siberian.dev/anomaly-detection/isolation-forest"
},
{
"name": "IsolationForest_MaxAbsScaler.ipynb",
"title": "Isolation Forest With MaxAbsScaler",
"description": "Anomaly detection using the Isolation Forest Algorithm. This template utilizes the pyod library for isolation forest class along with feature scaling using MaxAbsScaler.The Code utilizes IForest implementation from the pyod library, a wrapper of sci-kit-learn Isolation Forest with more functionalities.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Isolation_Forest/IsolationForest_MaxAbsScaler.ipynb",
"keywords": "isolation forest,isolation forest template,anomaly detection,isolation forest algorithm,pyod library,maxabsscaler",
"display_url": "https://siberian.dev/anomaly-detection/isolation-forest-maxabsscaler"
},
{
"name": "IsolationForest_MinMaxScaler.ipynb",
"title": "Isolation Forest With MinMaxScaler",
"description": "Anomaly Detection using the Isolation Forest Algorithm and MinMaxScaler for python data-rescaling operations. The MinMaxScaler transforms features by scaling each feature to a given range.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Isolation_Forest/IsolationForest_MinMaxScaler.ipynb",
"keywords": "isolation forest,isolation forest template,anomaly detection,isolation forest algorithm,pyod library,minmaxscaler",
"display_url": "https://siberian.dev/anomaly-detection/isolation-forest-minmaxscaler"
},
{
"name": "IsolationForest_RobustScaler.ipynb",
"title": "Isolation Forest With RobustScaler",
"description": "Anomaly detection using the Isolation Forest Algorithm. This template utilizes the IForest class from the pyod library and features scaling using sci-kit learns RobustScalar function.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Isolation_Forest/IsolationForest_RobustScaler.ipynb",
"keywords": "isolation forest,isolation forest template,anomaly detection,isolation forest algorithm,pyod library,robustscaler",
"display_url": "https://siberian.dev/anomaly-detection/isolation-forest-robustscaler"
},
{
"name": "IsolationForest_StandardScaler.ipynb",
"title": "Isolation Forest With StandardScaler",
"description": "Anomaly detection using the Isolation Forest Algorithm. This template utilizes IForest implementation from the pyod library along with feature rescaling using StandardScaler. The IsolationForest is based on ExtraTreeRegressor in the sci-kit learns library, which is used in pyod by wrapping the method with more functionality.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Isolation_Forest/IsolationForest_StandardScaler.ipynb",
"keywords": "isolation forest,isolation forest template,anomaly detection,isolation forest algorithm,pyod library,standardscaler",
"display_url": "https://siberian.dev/anomaly-detection/isolation-forest-standardscaler"
}
]
},
{
"name": "k-Nearest_Neighbors_Detector",
"models": [
{
"name": "kNN.ipynb",
"title": "k-Nearest Neighbors Detection",
"description": "Anomaly detection/outlier analysis using the kNN Algorithm. For an observation, its distance to its kth nearest neighbor can be viewed as the outlying score. It can also be viewed as a way to measure density.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/k-Nearest_Neighbors_Detector/kNN.ipynb",
"keywords": "k-nearest neighbors detection,knn,knn algorithm,knn sklearn,knn anomaly detection",
"display_url": "https://siberian.dev/anomaly-detection/knn-detection"
},
{
"name": "kNN_MinMaxScaler.ipynb",
"title": "k-Nearest Neighbors Detection With MinMaxScaler",
"description": "Anomaly detection/outlier analysis using the kNN Algorithm, along with feature scaling using MinMaxScaler. The algorithm assumes the similarity between the new case and existing cases and puts the new one into the category that is most similar to the existing categories.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/k-Nearest_Neighbors_Detector/kNN_MinMaxScaler.ipynb",
"keywords": "k-nearest neighbors detection,knn,knn algorithm,knn sklearn,knn anomaly detection,minmaxscaler",
"display_url": "https://siberian.dev/anomaly-detection/knn-detection-minmaxscaler"
},
{
"name": "kNN_StandardScaler.ipynb",
"title": "k-Nearest Neighbors Detection With StandardScaler",
"description": "Anomaly detection using the kNN Algorithm, along with a data rescaling technique using the sci-kit learn's StandardScaler.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/k-Nearest_Neighbors_Detector/kNN_StandardScaler.ipynb",
"keywords": "k-nearest neighbors detection,knn,knn algorithm,knn sklearn,knn anomaly detection,standard scaler",
"display_url": "https://siberian.dev/anomaly-detection/knn-detection-standardscaler"
}
]
},
{
"name": "Lightweight_On_line_Detector_of_Anomalies",
"models": [
{
"name": "LODA.ipynb",
"title": "Lightweight On-lIne Detector Of Anomalies",
"description": "Anomaly detection/outlier analysis using the Lightweight On-line Detector Algorithm implemented using the pyod library. LODA can identify features in which the scrutinized sample deviates from the majority. This capability is optimal when the goal is to find out what has caused the anomaly.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Lightweight_On_line_Detector_of_Anomalies/LODA.ipynb",
"keywords": "lightweight on-line detector,loda, pyod library,anomaly detection,classification,",
"display_url": "https://siberian.dev/anomaly-detection/loda"
},
{
"name": "LODA_MaxAbsScaler.ipynb",
"title": "Lightweight On-lIne Detector Of Anomalies With MaxAbsScaler",
"description": "The ability of the Lightweight On-line Detector(LODA) Algorithm implemented using the pyod library for Anomaly detection/outlier analysis and includes feature rescaling using MaxAbsScaler.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Lightweight_On_line_Detector_of_Anomalies/LODA_MaxAbsScaler.ipynb",
"keywords": "lightweight on-line detector,loda, pyod library,anomaly detection,classification,maxabsscaler",
"display_url": "https://siberian.dev/anomaly-detection/loda-maxabsscaler"
},
{
"name": "LODA_MinMaxScaler.ipynb",
"title": "Lightweight On-lIne Detector Of Anomalies With MinMaxScaler",
"description": "Anomaly detection using the Lightweight On-line Detector(LODA) Algorithm implemented using the pyod library. The implementation utilizes a data engineering technique named data rescaling using MinMaxScaler to scale down data.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Lightweight_On_line_Detector_of_Anomalies/LODA_MinMaxScaler.ipynb",
"keywords": "lightweight on-line detector,loda, pyod library,anomaly detection,classification,minmaxscaler",
"display_url": "https://siberian.dev/anomaly-detection/loda-minmaxscaler"
},
{
"name": "LODA_StandardScaler.ipynb",
"title": "Lightweight On-lIne Detector Of Anomalies With StandardScaler",
"description": "Anomaly detection/outlier analysis using the Lightweight On-line Detector(LODA) Algorithm implemented using the pyod library and feature scaling using StandardScaler.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Lightweight_On_line_Detector_of_Anomalies/LODA_StandardScaler.ipynb",
"keywords": "lightweight on-line detector,loda, pyod library,anomaly detection,classification,standardscaler",
"display_url": "https://siberian.dev/anomaly-detection/loda-standardscaler"
}
]
},
{
"name": "Local_Outlier_Factor",
"models": [
{
"name": "LOF.ipynb",
"title": "Local Outlier Factor",
"description": "Anomaly detection/outlier analysis using the Local Outlier Factor Algorithm. This template utilizes LOF implementation from the pyod library. The anomaly score of each sample is called the Local Outlier Factor. It measures the local deviation of the density of a given data concerning its neighbors.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Local_Outlier_Factor/LOF.ipynb",
"keywords": "local outlier factor,lof,local outlier factor sklearn,lof sklearn,anomaly detection,pyod library",
"display_url": "https://siberian.dev/anomaly-detection/local-outlier-factor"
},
{
"name": "LOF_StandardScaler.ipynb",
"title": "Local Outlier Factor With StandardScaler",
"description": "Anomaly detection using the Local Outlier Factor Algorithm. The template utilizes the data rescaling technique StandardScaler for data normalization. Pyod implementation of LOF is a wrapper of sci-kit-learn LOF Class with more functionalities.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Local_Outlier_Factor/LOF_StandardScaler.ipynb",
"keywords": "local outlier factor,lof,local outlier factor sklearn,lof sklearn,anomaly detection,pyod library,standard scaler",
"display_url": "https://siberian.dev/anomaly-detection/local-outlier-factor-standardscaler"
}
]
},
{
"name": "Minimum_Covariance_Determinant",
"models": [
{
"name": "MCD.ipynb",
"title": "Minimum Covariance DetermInant(MCD)",
"description": "Anomaly detection/outlier analysis using the Minimum Covariance Determinant(MCD) Algorithm. This template utilizes Minimum Covariance Determinant implementation from the sklearn.covariance library. The Minimum Covariance Determinant covariance estimator is to be applied to Gaussian-distributed data but could still be relevant to data drawn from a unimodal, symmetric distribution.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Minimum_Covariance_Determinant/MCD.ipynb",
"keywords": "minimum covariance determinant,mcd,mcd template,gaussian-distributed,mcd algorithm,anomaly detetction",
"display_url": "https://siberian.dev/anomaly-detection/minimum-covariance-determinant"
},
{
"name": "MCD_RobustScaler.ipynb",
"title": "Minimum Covariance DetermInant (MCD) With RobustScaler",
"description": "Anomaly detection using the Minimum Covariance Determinant(MCD) Algorithm. This template utilizes MCD along with feature scaling using RobustScalar from the sci-kit learn library.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Minimum_Covariance_Determinant/MCD_RobustScaler.ipynb",
"keywords": "minimum covariance determinant,mcd,mcd template,gaussian-distributed,mcd algorithm,anomaly detetction,robustscaler",
"display_url": "https://siberian.dev/anomaly-detection/minimum-covariance-determinant-robustscaler"
},
{
"name": "MCD_StandardScaler.ipynb",
"title": "Minimum Covariance DetermInant(MCD) With StandardScaler",
"description": "Anomaly detection/outlier analysis using the Minimum Covariance Determinant(MCD) Algorithm. This algorithm is well suited for Detecting outliers in a Gaussian-distributed dataset. This template also employs data rescaling using StandardScaler.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Minimum_Covariance_Determinant/MCD_StandardScaler.ipynb",
"keywords": "minimum covariance determinant,mcd,mcd template,gaussian-distributed,mcd algorithm,anomaly detetction,standardscaler",
"display_url": "https://siberian.dev/anomaly-detection/minimum-covariance-determinant-standardscaler"
}
]
},
{
"name": "Multi_Objective_Generative_Adversarial_Active_Learning",
"models": [
{
"name": "MO_GAAL_MinMaxScaler.ipynb",
"title": "Multi-Objective Generative Adversarial Active LearnIng With MinMaxScaler",
"description": "Anomaly detection/outlier analysis using the MO_GAAL Algorithm implemented using the pyod library and feature scaling using MinMaxScaler. MO_GAAL directly generates informative potential outliers to assist the classifier in describing a boundary that can separate outliers.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Multi_Objective_Generative_Adversarial_Active_Learning/MO_GAAL_MinMaxScaler.ipynb",
"keywords": "multi-objective genetic algorithm,anomaly detection,minmaxscaler,pyod library",
"display_url": "https://siberian.dev/anomaly-detection/multi-objective-generative-adversarial-active-learning-minmaxscaler"
},
{
"name": "MO_GAAL_RobustScaler.ipynb",
"title": "Multi-Objective Generative Adversarial Active LearnIng With RobustScaler",
"description": "Anomaly detection/outlier analysis using the MO_GAAL Algorithm implemented using the pyod library and feature scaling using RobustScaler.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Multi_Objective_Generative_Adversarial_Active_Learning/MO_GAAL_RobustScaler.ipynb",
"keywords": "multi-objective genetic algorithm,anomaly detection,pyod library,robustscaler",
"display_url": "https://siberian.dev/anomaly-detection/multi-objective-generative-adversarial-active-learning-robustscaler"
}
]
},
{
"name": "One_class_SVM_detector",
"models": [
{
"name": "OCSVM.ipynb",
"title": "One-Class SVM Detector",
"description": "Anomaly detection/outlier analysis using the OCSVM (One-class SVM detector)Algorithm implemented using the pyod library. It is a wrapper of sci-kit-learn one-class SVM Class with more functionalities.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/One_class_SVM_detector/OCSVM.ipynb",
"keywords": "one-class svm,one-class svm python, anomaly detection,one-class svm algorithm,pyod library,support vector machine",
"display_url": "https://siberian.dev/anomaly-detection/one-class-svm"
},
{
"name": "OCSVM_MinMaxScaler.ipynb",
"title": "One-Class SVM Detector With MinMaxScaler",
"description": "Anomaly detection using the OCSVM(One-class SVM detector) Algorithm implemented using the pyod library. Along with minimal data preprocessing, the template includes feature scaling using MinMaxScaler.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/One_class_SVM_detector/OCSVM_MinMaxScaler.ipynb",
"keywords": "one-class svm,one-class svm python, anomaly detection,one-class svm algorithm,pyod library,support vector machine,minmaxscaler",
"display_url": "https://siberian.dev/anomaly-detection/one-class-svm-minmaxscaler"
},
{
"name": "OCSVM_RobustScaler.ipynb",
"title": "One-Class SVM Detector With RobustScaler",
"description": "Anomaly detection/outlier analysis using the OCSVM(One-class SVM detector) Algorithm implemented using the pyod library. Sci-kit learns RobustScaler gets utilized to rescale the feature before training the model.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/One_class_SVM_detector/OCSVM_RobustScaler.ipynb",
"keywords": "one-class svm,one-class svm python, anomaly detection,one-class svm algorithm,pyod library,support vector machine,robustscaler",
"display_url": "https://siberian.dev/anomaly-detection/one-class-svm-robustscaler"
},
{
"name": "OCSVM_StandardScaler.ipynb",
"title": "One-Class SVM Detector With StandardScaler",
"description": "Anomaly detection/outlier analysis using the OCSVM Algorithm implemented using the pyod library and feature scaling using StandardScaler.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/One_class_SVM_detector/OCSVM_StandardScaler.ipynb",
"keywords": "one-class svm,one-class svm python, anomaly detection,one-class svm algorithm,pyod library,support vector machine,standardscaler",
"display_url": "https://siberian.dev/anomaly-detection/one-class-svm-standardscaler"
}
]
},
{
"name": "Principal_Component_Analysis_Outlier_Detector",
"models": [
{
"name": "PCA.ipynb",
"title": "Principal Component Analysis Outlier Detection",
"description": "Anomaly detection/outlier analysis using the Principal component analysis (PCA) Algorithm via the pyod PCA library. PCA is a linear dimensionality reduction using Singular Value Decomposition of the data to project it to a lower dimensional space.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Principal_Component_Analysis_Outlier_Detector/PCA.ipynb",
"keywords": "principal component analysis outlier detection,pca,anomaly detection,pca algorithm,pyod library",
"display_url": "https://siberian.dev/anomaly-detection/principal-component-analysis-outlier-detection"
},
{
"name": "PCA_RobustScaler.ipynb",
"title": "Principal Component Analysis Outlier Detection With RobustScaler",
"description": "Anomaly detection using the Principal component analysis (PCA) Algorithm via the pyod PCA library with the data scaling technique RobustScaler.Principal component analysis (PCA) also helps in detecting outliers.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Principal_Component_Analysis_Outlier_Detector/PCA_RobustScaler.ipynb",
"keywords": "principal component analysis outlier detection,pca,anomaly detection,pca algorithm,pyod library,robustscaler",
"display_url": "https://siberian.dev/anomaly-detection/principal-component-analysis-outlier-detection-robustscaler"
},
{
"name": "PCA_StandardScaler.ipynb",
"title": "Principal Component Analysis Outlier Detection With StandardScaler",
"description": "Anomaly detection/outlier analysis using the Principal component analysis Algorithm via the pyod library with the data scaling technique Standard Scaler.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Principal_Component_Analysis_Outlier_Detector/PCA_StandardScaler.ipynb",
"keywords": "principal component analysis outlier detection,pca,anomaly detection,pca algorithm,pyod library,standardscaler",
"display_url": "https://siberian.dev/anomaly-detection/principal-component-analysis-outlier-detection-standardscaler"
}
]
},
{
"name": "Single_Objective_Generative_Adversarial_Active_Learning",
"models": [
{
"name": "SO_GAAL.ipynb",
"title": "SIngle-Objective Generative Adversarial Active LearnIng",
"description": "Anomaly detection using the SO_GAAL Algorithm from the pyod library. Single-Objective Generative Adversarial Active Learning directly generates informative potential outliers to assist the classifier in describing a boundary that can separate outliers effectively.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Single_Objective_Generative_Adversarial_Active_Learning/SO_GAAL.ipynb",
"keywords": "generative adversarial active learning,gaal,objective generative adversarial active learning,single-objective generative adversarial active learning,anomaly detection,pyod library",
"display_url": "https://siberian.dev/anomaly-detection/single-objective-generative-adversarial-active-learning"
},
{
"name": "SO_GAAL_MaxAbsScaler.ipynb",
"title": "SIngle-Objective Generative Adversarial Active LearnIng With MaxAbsScaler",
"description": "Anomaly detection/outlier analysis using the SO_GAAL Algorithm implemented using the pyod library and feature scaling using MaxAbsScaler.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Single_Objective_Generative_Adversarial_Active_Learning/SO_GAAL_MaxAbsScaler.ipynb",
"keywords": "generative adversarial active learning,gaal,objective generative adversarial active learning,single-objective generative adversarial active learning,anomaly detection,pyod library,maxabsscaler",
"display_url": "https://siberian.dev/anomaly-detection/single-objective-generative-adversarial-active-learning-maxabsscaler"
},
{
"name": "SO_GAAL_MinMaxScaler.ipynb",
"title": "SIngle-Objective Generative Adversarial Active LearnIng With MinMaxScaler",
"description": "Anomaly detection/outlier analysis using the Single-Objective Generative Adversarial Active Learning Algorithm implemented using the pyod library and feature scaling using MinMaxScaler. SO_GAAL is a deep neural network-based model for anomaly detection.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Single_Objective_Generative_Adversarial_Active_Learning/SO_GAAL_MinMaxScaler.ipynb",
"keywords": "generative adversarial active learning,gaal,objective generative adversarial active learning,single-objective generative adversarial active learning,anomaly detection,pyod library,minmaxscaler",
"display_url": "https://siberian.dev/anomaly-detection/single-objective-generative-adversarial-active-learning-minmaxscaler"
},
{
"name": "SO_GAAL_RobustScaler.ipynb",
"title": "SIngle-Objective Generative Adversarial Active LearnIng With RobustScaler",
"description": "Anomaly detection/outlier analysis using the Single-Objective Generative Adversarial Active Learning(SO_GAAL) Algorithm implemented using the pyod library and feature scaling using RobustScaler.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Single_Objective_Generative_Adversarial_Active_Learning/SO_GAAL_RobustScaler.ipynb",
"keywords": "generative adversarial active learning,gaal,objective generative adversarial active learning,single-objective generative adversarial active learning,anomaly detection,pyod library,robustscaler",
"display_url": "https://siberian.dev/anomaly-detection/single-objective-generative-adversarial-active-learning-robustscaler"
},
{
"name": "SO_GAAL_StandardScaler.ipynb",
"title": "SIngle-Objective Generative Adversarial Active LearnIng With StandardScaler",
"description": "Anomaly detection/outlier analysis using the Single-Objective Generative Adversarial Active Learning(SO_GAAL) Algorithm implemented using pyod library and feature scaling using sklearn.StandardScaler",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Single_Objective_Generative_Adversarial_Active_Learning/SO_GAAL_StandardScaler.ipynb",
"keywords": "generative adversarial active learning,gaal,objective generative adversarial active learning,single-objective generative adversarial active learning,anomaly detection,pyod library,standardscaler",
"display_url": "https://siberian.dev/anomaly-detection/single-objective-generative-adversarial-active-learning-standardscaler"
}
]
},
{
"name": "Variational_Auto_Encoder",
"models": [
{
"name": "VAE.ipynb",
"title": "Variational AutoEncoder (VAE)",
"description": "Anomaly detection/outlier analysis using the Simple Variational Auto Encoder. This template utilizes Variational Auto Encoder implementation from the pyod library. A variational autoencoder can be defined as an autoencoder whose training is regularised to avoid overfitting and ensure that the latent space has good properties that enable a generative process.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Variational_Auto_Encoder/VAE.ipynb",
"keywords": "variational autoencoder,vae,autoencoder,anomaly detection,variational autoencoder python,pyod library",
"display_url": "https://siberian.dev/anomaly-detection/variational-autoencoder-vae"
},
{
"name": "VAE_MaxAbsScaler.ipynb",
"title": "Variational AutoEncoder (VAE) With MaxAbsScaler",
"description": "Anomaly detection/outlier analysis using the Variational Auto Encoder(VAE). This template utilizes the vae class from the pyod library and the MaxAbsScaler for the feature rescaling technique.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Variational_Auto_Encoder/VAE_MaxAbsScaler.ipynb",
"keywords": "variational autoencoder,vae,autoencoder,anomaly detection,variational autoencoder python,pyod library,maxabsscaler",
"display_url": "https://siberian.dev/anomaly-detection/variational-autoencoder-vae-maxabsscaler"
},
{
"name": "VAE_RobustScaler.ipynb",
"title": "Variational AutoEncoder (VAE) With RobustScaler",
"description": "Anomaly detection using the Variational Auto Encoder. RobustScaler is used for data rescaling before performing Unsupervised model training.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Variational_Auto_Encoder/VAE_RobustScaler.ipynb",
"keywords": "variational autoencoder,vae,autoencoder,anomaly detection,variational autoencoder python,pyod library,robustscaler",
"display_url": "https://siberian.dev/anomaly-detection/variational-autoencoder-vae-robustscaler"
},
{
"name": "VAE_StandardScaler.ipynb",
"title": "Variational AutoEncoder (VAE) With StandardScaler",
"description": "Anomaly detection/outlier analysis using the Simple Variational Auto Encoder. This template utilizes the StandardScaler for the feature rescaling technique before performing the fit operation on the vae estimator.",
"URL": "https://cdn.siberian.dev/code/Anomaly_Detection/Variational_Auto_Encoder/VAE_StandardScaler.ipynb",
"keywords": "variational autoencoder,vae,autoencoder,anomaly detection,variational autoencoder python,pyod library,standardscaler",
"display_url": "https://siberian.dev/anomaly-detection/variational-autoencoder-vae-standardscaler"
}
]
}
]
},
{
"name": "Audio_Visual",
"image": "https://cdn.siberian.dev/code-gen/av_blue.png",
"description": "Image, video, and audio data analysis for varied use cases.",
"models": [
{
"name": "Car_License_Plate",
"models": [
{
"name": "CarNumberPlateDetection_OpenCV.ipynb",
"title": "License Plate Detection Using OpenCV",
"description": "Car number plate detection using OpenCV in this task uses the Haar Cascade XML file containing the features of Russian car plates for detecting the bounding box for the license plates.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Car_License_Plate/CarNumberPlateDetection_OpenCV.ipynb",
"keywords": "car plate detection, license plate detection,opencv,cascade classifier,number plate detection using python",
"display_url": "https://siberian.dev/audio-visual/license-plate-detection-using-opencv"
},
{
"name": "CarNumberPlateDetection_OpenCV_OCR.ipynb",
"title": "License Plate Detection Using OpenCV And OCR",
"description": "The code template demonstrates car License plate detection using OpenCV and Optical Character Recognition(OCR). OCR is a technology that recognizes text within a digital image.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Car_License_Plate/CarNumberPlateDetection_OpenCV_OCR.ipynb",
"keywords": "car plate detection, license plate detection,cascade classifier,number plate detection using python,optical character recognition,ocr",
"display_url": "https://siberian.dev/audio-visual/license-plate-detection-using-opencv-and-ocr"
},
{
"name": "CarNumberPlateDetection_OpenCV_Video.ipynb",
"title": "License Plate Detection Using OpenCV Using Python",
"description": "Car Plate Number Detection using OpenCV in Python. It takes a video as input and outputs the car plate number with a boundary/box surrounding it per frame in the video. This template uses EasyOCR to convert text on an image to a string.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Car_License_Plate/CarNumberPlateDetection_OpenCV_Video.ipynb",
"keywords": "car plate detection, license plate detection,cascade classifier,number plate detection using python,optical character recognition,ocr",
"display_url": "https://siberian.dev/audio-visual/license-plate-detection-using-opencv-using-python"
}
]
},
{
"name": "Facial",
"models": [
{
"name": "EyeDetection_OpenCV.ipynb",
"title": "Eye Detection Using OpenCV In Python",
"description": "Eye Detection using OpenCV in Python for Image inputs. CascadeClassifier of openCV is utilized along with haarcascade_eye.xml",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Facial/EyeDetection_OpenCV.ipynb",
"keywords": "eye detection using opencv,eye detection using python,eye detection algorithm,cascade classifier,haar cascade classifier",
"display_url": "https://siberian.dev/audio-visual/eye-detection-using-opencv-using-python"
},
{
"name": "EyeDetection_OpenCV_Video.ipynb",
"title": "Eye Detection Using OpenCV In Video",
"description": "Eye detection in a video using OpenCV Library. CascadeClassifier of openCV is utilized along with haarcascade_eye.xml",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Facial/EyeDetection_OpenCV_Video.ipynb",
"keywords": "eye detection using opencv,eye detection using python,eye detection algorithm,cascade classifier,haar cascade classifier,",
"display_url": "https://siberian.dev/audio-visual/eye-detection-using-opencv-in-video"
},
{
"name": "FaceAgeDetection_OpenCV.ipynb",
"title": "Face Age Detection Using OpenCV",
"description": "Face Age Detection using Huggingface Vision Transformers and OpenCV in Python. The template uses CascadeClassifier to detect the face in the input and then uses the Huggingface model to predict the age.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Facial/FaceAgeDetection_OpenCV.ipynb",
"keywords": "face age detection using opencv,face age detection using python,hugging face model,cascade classifier",
"display_url": "https://siberian.dev/audio-visual/face-age-detection-using-opencv"
},
{
"name": "FaceDetection_OpenCV.ipynb",
"title": "Face Detection Using OpenCV In Python",
"description": "Face Detection using OpenCV in Python. OpenCV uses CascadeClassifier class to detect Faces from Images using the haar cascade file.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Facial/FaceDetection_OpenCV.ipynb",
"keywords": "face age detection using opencv,face age detection using python,cascade classifier,hugging face model,haar cascade classifier",
"display_url": "https://siberian.dev/audio-visual/face-detection-using-opencv-in-python"
},
{
"name": "FaceDetection_Video.ipynb",
"title": "Face Detection Using OpenCV In Video",
"description": "Face detection in a video using OpenCV Library. Run this code either on Spyder or PyCharm. The Front Face Haar cascade file is utilized to detect faces in the video stream.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Facial/FaceDetection_Video.ipynb",
"keywords": "face age detection using opencv,face age detection using python,hugging face version,cascade classifier,haar cascade classifier",
"display_url": "https://siberian.dev/audio-visual/face-detection-using-opencv-in-video"
}
]
},
{
"name": "Image_Classification",
"models": [
{
"name": "ImageClassificaitonXGBoost.ipynb",
"title": "Image Classification Using XGBoost",
"description": "Image Classification using XGBoost. The task of identifying what an image represents is called image classification. An image classification model is trained to recognize various classes of images.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Image_Classification/ImageClassificaitonXGBoost.ipynb",
"keywords": "image classification,xgboost,cnn,extreme gradient boosting,unsupervised image classification,supervised image classification",
"display_url": "https://siberian.dev/audio-visual/image-classification-using-xgboost"
},
{
"name": "ImageClassificationANN.ipynb",
"title": "Image Classification Using ANN",
"description": "An Image Classification task using an Artificial Neural Network (ANN). An Artificial Neural Network in the field of Artificial intelligence attempts to mimic the network of neurons that makes up a human brain so that computers will have the option to understand things and make decisions in a human-like manner.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Image_Classification/ImageClassificationANN.ipynb",
"keywords": "image classification,artificial neural network,ann,neural network models,image classification using ann",
"display_url": "https://siberian.dev/audio-visual/image-classification-using-ann"
},
{
"name": "ImageClassificationCNN.ipynb",
"title": "Image Classification Using CNN",
"description": "An Image Classification task using a Convolutional Neural Network (ConvNet/CNN). The Convolutional Neural Network is a subtype of Neural Network used in the field of image and speech recognition. Its built-in convolutional layer reduces the high dimensionality of images without losing their information.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Image_Classification/ImageClassificationCNN.ipynb",
"keywords": "image classification,convolutional neural network,cnn,convolutional layer,neural network,convnet,supervised machine learning method",
"display_url": "https://siberian.dev/audio-visual/image-classification-using-cnn"
},
{
"name": "ImageClassificationDenseNet121.ipynb",
"title": "Image Classification Using DenseNet 121",
"description": "An image classification using DenseNet 121. A DenseNet is a type of CNN that utilizes dense connections between layers through Dense Blocks, where we connect all layers directly with each other.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Image_Classification/ImageClassificationDenseNet121.ipynb",
"keywords": "image classification,densenet,dense convolutional network,densenet121,cnn",
"display_url": "https://siberian.dev/audio-visual/image-classification-using-densenet121"
},
{
"name": "ImageClassificationDenseNet201.ipynb",
"title": "Image Classification Using DenseNet201",
"description": "An image classification using DenseNet 201. The DenseNet was developed specifically to improve the declined accuracy caused by the vanishing gradient in high-level neural networks.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Image_Classification/ImageClassificationDenseNet201.ipynb",
"keywords": "image classification,densenet,dense convolutional network,densenet201,cnn",
"display_url": "https://siberian.dev/audio-visual/image-classification-using-densenet201"
},
{
"name": "ImageClassificationEfficientNet.ipynb",
"title": "Image Classification Using EfficientNet",
"description": "An image classification using EfficientNet. EfficientNet is a CNN architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a compound coefficient.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Image_Classification/ImageClassificationEfficientNet.ipynb",
"keywords": "image classification,efficientnet,efficientnet-b1,cnn,efficientnet-b0,efficientnet-b7",
"display_url": "https://siberian.dev/audio-visual/image-classification-using-efficientnet"
},
{
"name": "ImageClassificationInceptionResNetV2.ipynb",
"title": "Image Classification Using InceptionResNetV2",
"description": "Image classification using InceptionResNetV2. Inception-ResNet-v2 is a convolutional neural network that is trained on more than a million images from the ImageNet database. The network is 164 layers deep and can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Image_Classification/ImageClassificationInceptionResNetV2.ipynb",
"keywords": "image classification,inceptionresnetv2,cnn,inceptionv3,inceptionv2,resnetv2",
"display_url": "https://siberian.dev/audio-visual/image-classification-using-inception-resnetv2"
},
{
"name": "ImageClassificationInceptionV3.ipynb",
"title": "Image Classification Using InceptionV3",
"description": "Image classification using InceptionV3. Inception v3 is an image recognition model that has been shown to attain greater than 78.1% accuracy on the ImageNet dataset.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Image_Classification/ImageClassificationInceptionV3.ipynb",
"keywords": "image classification,cnn,inceptionv3,image recognition model,inceptionv2,inceptionv1",
"display_url": "https://siberian.dev/audio-visual/image-classification-using-inceptionv3"
},
{
"name": "ImageClassificationKNeighborsClassifier.ipynb",
"title": "Image Classification Using k-Nearest Neighbor Classifier",
"description": "The template is for Image Classification using KNeighborsClassifier based on K-Nearest Neighbors algorithm. KNeighborsClassifier implements learning based on the nearest neighbors of each query point, where is an integer value specified by the user.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Image_Classification/ImageClassificationKNeighborsClassifier.ipynb",
"keywords": "image classification,kneighbors classifier,knearest neighbors,k-means clustering,k-nnclassifier",
"display_url": "https://siberian.dev/audio-visual/image-classification-using-knearest-neighbors-classifier"
},
{
"name": "ImageClassificationLinearSVC.ipynb",
"title": "Image Classification Using LinearSVC",
"description": "The Image Classification task using LinearSVC(Linear SupportVectorClassifier) based on the Support Vector Machine Algorithm.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Image_Classification/ImageClassificationLinearSVC.ipynb",
"keywords": "image classification,linearsvc,linear support vector classifier,svm,svc,c-suppport classifier",
"display_url": "https://siberian.dev/audio-visual/image-classification-using-linearSVC"
},
{
"name": "ImageClassificationMLP.ipynb",
"title": "Image Classification Using MLP",
"description": "An Image Classification task using Multilayer perceptron (MLP). It is a class of feedforward artificial neural networks (ANN). The term MLP is used ambiguously, sometimes loosely, to mean any feedforward ANN, sometimes strictly to refer to networks composed of multiple layers of perceptrons",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Image_Classification/ImageClassificationMLP.ipynb",
"keywords": "image classificaiton,multi layer perceptron,mlp,artificial neural network,ann,neural network",
"display_url": "https://siberian.dev/audio-visual/image-classification-using-mlp"
},
{
"name": "ImageClassificationMobileNetV2.ipynb",
"title": "Image Classification Using MobileNetV2",
"description": "Image classification using MobileNetV2. MobileNet-v2 is a convolutional neural network that is 53 layers deep. You can load a pre-trained version of the network trained on more than a million images from the ImageNet database.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Image_Classification/ImageClassificationMobileNetV2.ipynb",
"keywords": "image classification,mobilenetv2,convolutional neural network,cnn,image net dataset",
"display_url": "https://siberian.dev/audio-visual/image-classification-using-mobilenetv2"
},
{
"name": "ImageClassificationNASNetLarge.ipynb",
"title": "Image Classification Using NASNet-Large",
"description": "The Image Classification task using NASNetLarge. NASNet-Large is a convolutional neural network which is trained on more than a million images from the ImageNet database.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Image_Classification/ImageClassificationNASNetLarge.ipynb",
"keywords": "image classification,nasnet large,nasnet mobile,nasnet,cnn",
"display_url": "https://siberian.dev/audio-visual/image-classification-using-nasnet-large"
},
{
"name": "ImageClassificationNuSVC.ipynb",
"title": "Image Classification Using NuSVC",
"description": "The Image Classification task using the Simple NuSVC Algorithm. NuSVC is Nu Support Vector Classification. It is another class provided by sci-kit-learn which can perform multi-class classification.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Image_Classification/ImageClassificationNuSVC.ipynb",
"keywords": "image classification,nusvc,nusupport vector classification,svc,scikit",
"display_url": "https://siberian.dev/audio-visual/image-classification-using-nusvc"
},
{
"name": "ImageClassificationPerceptron.ipynb",
"title": "Image Classification Using Perceptron",
"description": "The Image Classification task using Perceptron. Perceptron is a Machine Learning algorithm for supervised learning of various binary classification tasks. Further, Perceptron is also defined as an Artificial Neuron or neural network unit that helps to detect certain input data computations in business intelligence.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Image_Classification/ImageClassificationPerceptron.ipynb",
"keywords": "image classification,perceptron,multi layer perceptron,svm,binary classification",
"display_url": "https://siberian.dev/audio-visual/image-classification-using-perceptron"
},
{
"name": "ImageClassificationResNet101.ipynb",
"title": "Image Classification Using ResNet101",
"description": "Image classification using Resnet101. ResNets are one of the most efficient Neural Network Architectures, as they help maintain a low error rate much deeper in the network.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Image_Classification/ImageClassificationResNet101.ipynb",
"keywords": "image classification,resnet,resnet101,ann,neural network architecture,resnet50",
"display_url": "https://siberian.dev/audio-visual/image-classification-using-resnet101"
},
{
"name": "ImageClassificationResNet152.ipynb",
"title": "Image Classification Using ResNet152",
"description": "Image classification using Resnet152. The utilized Resnet model is a 152 layers network pre-trained on the ImageNet dataset.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Image_Classification/ImageClassificationResNet152.ipynb",
"keywords": "image classification,resnet-152,resnet-50,resnet-152architecture,resnet model",
"display_url": "https://siberian.dev/audio-visual/image-classification-using-resnet152"
},
{
"name": "ImageClassificationResNet50.ipynb",
"title": "Image Classification Using ResNet50",
"description": "Image classification using Resnet50. This architecture introduced the concept of Residual Block to solve the problem of the vanishing/exploding gradient.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Image_Classification/ImageClassificationResNet50.ipynb",
"keywords": "image classification,resnet50,resnet model,cnn,classification model,deep learning model",
"display_url": "https://siberian.dev/audio-visual/image-classification-using-resnet50"
},
{
"name": "ImageClassificationSVC.ipynb",
"title": "Image Classification Using SVC",
"description": "An Image Classification task using Simple SVC(SupportVectorClassifier) based on a Support Vector Machine Algorithm. SVM is a supervised machine learning algorithm that can be used for both classification and regression challenges.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Image_Classification/ImageClassificationSVC.ipynb",
"keywords": "image classification,svc,support vector classifier,svm,scikit learn",
"display_url": "https://siberian.dev/audio-visual/image-classification-using-svc"
},
{
"name": "ImageClassificationVGG16.ipynb",
"title": "Image Classification Using VGG16",
"description": "The Image Classification task using Transfer Learning Technique. For this task in this template, VGG-16 pre-trained Deep Neural Network Architecture is Utilized from Tensorflow Library. The network is 16 layers deep.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Image_Classification/ImageClassificationVGG16.ipynb",
"keywords": "image classification,vgg,vgg-16,deep neural network architecture,cnn",
"display_url": "https://siberian.dev/audio-visual/image-classification-using-vgg16"
},
{
"name": "ImageClassificationVGG19.ipynb",
"title": "Image Classification Using VGG19",
"description": "Image classification using the VGG19 model. VGG stands for Visual Geometry Group. It is a standard deep Convolutional Neural Network (CNN) architecture with multiple layers.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Image_Classification/ImageClassificationVGG19.ipynb",
"keywords": "image classification,vgg model,vgg-16,vgg-19,cnn,vgg net19",
"display_url": "https://siberian.dev/audio-visual/image-classification-using-vgg19"
},
{
"name": "Traffic_Sign_Recognition.ipynb",
"title": "Traffic Sign Recognition Using opencv",
"description": "Traffic Sign Recognition using OpenCV along with Keras from TensorFlow in python. The designed Neural Network classifies different traffic sign boards.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Image_Classification/Traffic_Sign_Recognition.ipynb",
"keywords": "traffic sign recognition,opencv,python,neural network,keras",
"display_url": "https://siberian.dev/audio-visual/traffic-sign-recognition-using-opencv"
}
]
},
{
"name": "Object_Detection",
"models": [
{
"name": "ObjectDetectionOpenCV.ipynb",
"title": "Object Detection Using OpenCV Using python",
"description": "Object Detection in python using the OpenCV library. Object Detection is A computer vision technique that deals with detecting objects in an image or video. This technique draws a boundary or a bounding box around the target object and may also include their target label. It has many real-life applications like, image retrieval and video surveillance.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Object_Detection/ObjectDetectionOpenCV.ipynb",
"keywords": "object detection,python,opencv,opencv library,object detection using opencv",
"display_url": "https://siberian.dev/audio-visual/object-detection-using-opencv-using-python"
},
{
"name": "ObjectDetection_Video.ipynb",
"title": "Object Detection Using OpenCV In Video",
"description": "Object Detection through webcam video capture using the OpenCV library in python. This technique draws a boundary or a bounding box around the target object and may also include its target label.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Object_Detection/ObjectDetection_Video.ipynb",
"keywords": "object detection,opencv,python,opencv library,image recognition algorithm",
"display_url": "https://siberian.dev/audio-visual/object-detection-using-opencv-in-video"
}
]
},
{
"name": "Other",
"models": [
{
"name": "HandGestureDetection_OpenCV_Video.ipynb",
"title": "HAnd Gesture Detection Using OpenCV",
"description": "Hand Gesture detection in a video using OpenCV Library. The task of detecting hand movement and annotating landmarks is performed using the media pipe library.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Other/HandGestureDetection_OpenCV_Video.ipynb",
"keywords": "hand gesture detection,opencv libraries,mediapipe,knn algorithm,palm detection model",
"display_url": "https://siberian.dev/audio-visual/hand-gesture-detection-using-opencv"
},
{
"name": "MotionDetection_OpenCV.ipynb",
"title": "Motion Detection Using OpenCV",
"description": "Motion detection in a video using OpenCV Library. Run this code either on Spyder or PyCharm. Motion is detected by comparing the difference in the frame every.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Other/MotionDetection_OpenCV.ipynb",
"keywords": "motion detection uing opencv,spyder,pycharm,opencv library,",
"display_url": "https://siberian.dev/audio-visual/motion-detection-using-opencv"
}
]
},
{
"name": "Text",
"models": [
{
"name": "TextDetection_OCR_Video.ipynb",
"title": "Text Detection In Video Using OCR",
"description": "Text Detection using OCR in Python. It takes a video as an input and outputs the text with a boundary/box surrounding it per frame in the video. This template uses EasyOCR to convert text on an image to a string.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Text/TextDetection_OCR_Video.ipynb",
"keywords": "text detection,ocr,python,easy ocr,ocr engine,natural language processing algorithms",
"display_url": "https://siberian.dev/audio-visual/text-detection-in-video-using-ocr"
},
{
"name": "Text_Detection_OCR.ipynb",
"title": "Text Detection Using OCR",
"description": "Text Detection using OpenCV and the easyocr for Optical Character Recognition in an image file.",
"URL": "https://cdn.siberian.dev/code/Audio_Visual/Text/Text_Detection_OCR.ipynb",
"keywords": "text detection,ocr,ocr engine,optical character recognition,ocr type",
"display_url": "https://siberian.dev/audio-visual/text-detection-using-ocr"
}
]
}
]
},
{
"name": "Classification",
"image": "https://cdn.siberian.dev/code-gen/classification_blue.png",
"description": "Classification is a process of categorizing a given set of data into classes.",
"models": [
{
"name": "Adaptive_Boosting",
"models": [
{
"name": "AdaBoostClassifier.ipynb",
"title": "AdaBoost Classifier",
"description": "The Classification tasks using a simple AdaBoostClassifier based on the Boosting Ensemble Learning technique. AdaBoost is also known as the Adaptive Boosting Algorithm.",
"URL": "https://cdn.siberian.dev/code/Classification/Adaptive_Boosting/AdaBoostClassifier.ipynb",
"keywords": "adaboost classifier,adaptive boosting,adaboost,adaboost classification,machine learning algorithm",
"display_url": "https://siberian.dev/classification/adaboost-classifier"
},
{
"name": "AdaBoostClassifier_MaxAbsScaler.ipynb",
"title": "AdaBoost Classifier With MaxAbsScaler",
"description": "The Classification tasks using a simple AdaBoostClassifier based on the Boosting Ensemble Learning technique, where the data rescaling technique used is MaxAbsScaler. These algorithms improve the prediction power by converting several weak learners to strong learners.",
"URL": "https://cdn.siberian.dev/code/Classification/Adaptive_Boosting/AdaBoostClassifier_MaxAbsScaler.ipynb",
"keywords": "adaboost classifier,adaptive boosting,adaboost,adaboost classification,machine learning algorithm,adaboost",
"display_url": "https://siberian.dev/classification/adaboost-classifier-maxabsscaler"
},
{
"name": "AdaBoostClassifier_MinMaxScaler.ipynb",
"title": "AdaBoost Classifier With MinMaxScaler",
"description": "The Classification tasks using a simple AdaBoostClassifier based on the Boosting Ensemble Learning technique, where the data rescaling technique used is the MinMaxScaler function. The most common algorithm used with AdaBoost is decision trees with one level which means Decision trees with only 1 split.",
"URL": "https://cdn.siberian.dev/code/Classification/Adaptive_Boosting/AdaBoostClassifier_MinMaxScaler.ipynb",
"keywords": "adaboost classifier,adaptive boosting,adaboost,adaboost classification,machine learning algorithm,minmaxscaler vs maxabsscaler",
"display_url": "https://siberian.dev/classification/adaboost-classifier-minmaxscaler"
},
{
"name": "AdaBoostClassifier_Normalize.ipynb",
"title": "AdaBoost Classifier With Normalization",
"description": "The Classification tasks using a simple AdaBoostClassifier based on the Boosting Ensemble Learning technique, where the data rescaling technique used is the Normalize function from the sci-kit learn library.",
"URL": "https://cdn.siberian.dev/code/Classification/Adaptive_Boosting/AdaBoostClassifier_Normalize.ipynb",
"keywords": "adaboost classifier,minmaxscaler,adaboost python example,minmaxscaler vs maxabsscaler,adaboost classification,normalization",
"display_url": "https://siberian.dev/classification/adaboost-classifier-normalization"
},
{
"name": "AdaBoostClassifier_RobustScaler.ipynb",
"title": "AdaBoost Classifier With RobustScaler",
"description": "The Classification tasks using a simple AdaBoostClassifier based on the Boosting Ensemble Learning technique. For data rescaling, Robust Scaler is utilized for normalizing the data.",
"URL": "https://cdn.siberian.dev/code/Classification/Adaptive_Boosting/AdaBoostClassifier_RobustScaler.ipynb",
"keywords": "adaboost classifier,adaptive boosting,adaboost,adaboost classification,machine learning algorithm,robustscaler",
"display_url": "https://siberian.dev/classification/adaboost-classifier-robustscaler"
},
{
"name": "AdaBoostClassifier_Scale.ipynb",
"title": "AdaBoost Classifier With Scale",
"description": "the Classification tasks using a simple AdaBoostClassifier based on the Boosting Ensemble Learning technique, along with the data rescaling technique using the Scale function.",
"URL": "https://cdn.siberian.dev/code/Classification/Adaptive_Boosting/AdaBoostClassifier_Scale.ipynb",
"keywords": "adaboost classifier,adaptive boosting,adaboost,adaboost classification,machine learning algorithm,scale function,",
"display_url": "https://siberian.dev/classification/adaboost-classifier-scale"
},
{
"name": "AdaBoostClassifier_StandardScaler.ipynb",
"title": "AdaBoost Classifier With StandardScaler",
"description": "The Classification tasks using an AdaBoostClassifier based on the Boosting Ensemble Learning technique. StandardScaler is utilized for data rescaling before model training for classification.",
"URL": "https://cdn.siberian.dev/code/Classification/Adaptive_Boosting/AdaBoostClassifier_StandardScaler.ipynb",
"keywords": "adaboost classifier,adaptive boosting,adaboost,adaboost classification,machine learning algorithm,scale function,standardscaler",
"display_url": "https://siberian.dev/classification/adaboost-classifier-standardscaler"
}
]
},
{
"name": "CatBoost",
"models": [
{
"name": "CatBoostClassifier.ipynb",
"title": "CatBoost Classifier",
"description": "Classification using CatBoostClassifier. CatBoost is an algorithm for gradient boosting on decision trees. CatBoost name comes from two words Category and Boosting.",
"URL": "https://cdn.siberian.dev/code/Classification/CatBoost/CatBoostClassifier.ipynb",
"keywords": "catboost classifier,catboost,gradient boosting, decision tree,catboost algorithm,scaling technique",
"display_url": "https://siberian.dev/classification/catboost-classifier"
},
{
"name": "CatBoostClassifier_MaxAbsScaler.ipynb",
"title": "CatBoost Classifier With MaxAbsScaler",
"description": "The Classification task using CatBoostClassifier with the MaxAbsScaler feature scaling technique. CatBoost is a high-performance open-source library for gradient boosting on decision trees.",
"URL": "https://cdn.siberian.dev/code/Classification/CatBoost/CatBoostClassifier_MaxAbsScaler.ipynb",
"keywords": "catboost classifier,catboost,gradient boosting, decision tree,catboost algorithm,scaling technique,maxabsscaler",
"display_url": "https://siberian.dev/classification/catboost-classifier-maxabsscaler"
},
{
"name": "CatBoostClassifier_MinMaxScaler.ipynb",
"title": "CatBoost Classifier With MinMaxScaler",
"description": "The Classification task using CatBoostClassifier with MinMaxScaler Rescaling Technique without a pipeline. In this demonstration, CatBoostClassifier from the CatBoost library is utilized.",
"URL": "https://cdn.siberian.dev/code/Classification/CatBoost/CatBoostClassifier_MinMaxScaler.ipynb",
"keywords": "catboost classifier,catboost,gradient boosting, decision tree,catboost algorithm,scaling technique,minmaxscaler",
"display_url": "https://siberian.dev/classification/catboost-classifier-minmaxscaler"
},
{
"name": "CatBoostClassifier_Normalize.ipynb",
"title": "CatBoost Classifier With Normalization",
"description": "The Classification task using CatBoostClassifier. Before training the actual model, the training and test set will be normalized using Normalize function from the sci-kit learn library.",
"URL": "https://cdn.siberian.dev/code/Classification/CatBoost/CatBoostClassifier_Normalize.ipynb",
"keywords": "catboost classifier,catboost,gradient boosting, decision tree,catboost algorithm,scaling technique,normalization",
"display_url": "https://siberian.dev/classification/catboost-classifier-normalization"
},
{
"name": "CatBoostClassifier_Pool.ipynb",
"title": "CatBoost Classifier Using Pool",
"description": "Classification using CatBoostClassifier with data preprocessing via Pool. CatBoost is an algorithm for gradient boosting on decision trees. Pool used in CatBoost as a data structure to train a model from.",
"URL": "https://cdn.siberian.dev/code/Classification/CatBoost/CatBoostClassifier_Pool.ipynb",
"keywords": "catboost classifier,catboost,gradient boosting, decision tree,catboost algorithm,scaling technique",
"display_url": "https://siberian.dev/classification/catboost-classifier-using-pool"
},
{
"name": "CatBoostClassifier_StandardScaler.ipynb",
"title": "CatBoostClassifier With StandardScaler",
"description": "The Classification task using CatBoostClassifier. Along with model training, the template illustrates the impact of data rescaling using the StandardScaler function on the model accuracy.",
"URL": "https://cdn.siberian.dev/code/Classification/CatBoost/CatBoostClassifier_StandardScaler.ipynb",
"keywords": "catboost classifier,catboost,gradient boosting, decision tree,catboost algorithm,scaling technique,standardscaler",
"display_url": "https://siberian.dev/classification/catboost-classifier-standardscaler"
}
]
},
{
"name": "Decision_Tree",
"models": [
{
"name": "DecisionTreeClassifier.ipynb",
"title": "Decision Tree Classification",
"description": "The Classification task using a simple DecisionTreeClassifier based on the Classification and Regression Trees algorithm. A Decision tree is a flowchart-like tree structure where each internal node denotes a test on an attribute, each branch represents an outcome of the test, and each leaf node holds an outcome label.",
"URL": "https://cdn.siberian.dev/code/Classification/Decision_Tree/DecisionTreeClassifier.ipynb",
"keywords": "decision tree classification,decision tree algorithm,decision tree example,regression tree,decision tree classification example",
"display_url": "https://siberian.dev/classification/decision-tree-classification"
},
{