diff --git a/.gitmodules b/.gitmodules index c2b9a95a5e0345..3fe46e9e125d34 100644 --- a/.gitmodules +++ b/.gitmodules @@ -345,3 +345,8 @@ path = third_party/re2/src url = https://github.com/google/re2.git platforms = linux,darwin +[submodule "third_party/bouffalolab/bouffalo_sdk"] + path = third_party/bouffalolab/bouffalo_sdk + url = git@github.com:bouffalolab/bouffalo_sdk_private.git + branch = master + platforms = bouffalo_sdk diff --git a/scripts/build/build/targets.py b/scripts/build/build/targets.py index 4af73192b578d4..2b5e7c6a03d037 100755 --- a/scripts/build/build/targets.py +++ b/scripts/build/build/targets.py @@ -731,6 +731,7 @@ def BuildBouffalolabTarget(): target.AppendModifier('mot', use_matter_openthread=True).OnlyIfRe('-(thread)') target.AppendModifier('memmonitor', enable_heap_monitoring=True) target.AppendModifier('coredump', enable_debug_coredump=True) + target.AppendModifier('pbuf-pool', enable_lwip_pbuf_ram=False).OnlyIfRe('-(bl602dk)') return target diff --git a/scripts/build/builders/bouffalolab.py b/scripts/build/builders/bouffalolab.py index 5cee2d873bb8b7..e1daaf8d9ca661 100644 --- a/scripts/build/builders/bouffalolab.py +++ b/scripts/build/builders/bouffalolab.py @@ -104,6 +104,7 @@ def __init__(self, enable_littlefs: bool = False, enable_pds: bool = False, enable_debug_coredump: bool = False, + enable_lwip_pbuf_ram: bool = True ): if 'BL602' == module_type: @@ -250,6 +251,9 @@ def __init__(self, self.argsOpt.append(f"chip_generate_link_map_file=true") + if enable_lwip_pbuf_ram: + self.argsOpt.append(f"enable_lwip_pbuf_ram=true") + try: self.argsOpt.append('bouffalolab_sdk_root="%s"' % os.environ['BOUFFALOLAB_SDK_ROOT']) except KeyError as err: diff --git a/scripts/build/testdata/all_targets_linux_x64.txt b/scripts/build/testdata/all_targets_linux_x64.txt index 875c964cb998fb..8ad26d6bfe94cb 100644 --- a/scripts/build/testdata/all_targets_linux_x64.txt +++ b/scripts/build/testdata/all_targets_linux_x64.txt @@ -1,7 +1,7 @@ ameba-amebad-{all-clusters,all-clusters-minimal,light,light-switch,pigweed} asr-{asr582x,asr595x,asr550x}-{all-clusters,all-clusters-minimal,lighting,light-switch,lock,bridge,temperature-measurement,thermostat,ota-requestor,dishwasher,refrigerator}[-ota][-shell][-no_logging][-factory][-rotating_id][-rio] android-{arm,arm64,x86,x64,androidstudio-arm,androidstudio-arm64,androidstudio-x86,androidstudio-x64}-{chip-tool,chip-test,tv-server,tv-casting-app,java-matter-controller,kotlin-matter-controller,virtual-device-app}[-no-debug] -bouffalolab-{bl602dk,bl616dk,bl704ldk,bl706dk,bl602-night-light,bl706-night-light,bl602-iot-matter-v1,xt-zb6-devkit}-{light,contact-sensor}-{ethernet,wifi,thread,thread-ftd,thread-mtd}-{easyflash,littlefs}[-shell][-mfd][-rotating_device_id][-rpc][-cdc][-mot][-memmonitor][-coredump] +bouffalolab-{bl602dk,bl616dk,bl704ldk,bl706dk,bl602-night-light,bl706-night-light,bl602-iot-matter-v1,xt-zb6-devkit}-{light,contact-sensor}-{ethernet,wifi,thread,thread-ftd,thread-mtd}-{easyflash,littlefs}[-shell][-mfd][-rotating_device_id][-rpc][-cdc][-mot][-memmonitor][-coredump][-pbuf-pool] cc32xx-{lock,air-purifier} ti-cc13x4_26x4-{lighting,lock,pump,pump-controller}[-mtd][-ftd] cyw30739-{cyw30739b2_p5_evk_01,cyw30739b2_p5_evk_02,cyw30739b2_p5_evk_03,cyw930739m2evb_01,cyw930739m2evb_02}-{light,light-switch,lock,thermostat} diff --git a/scripts/checkout_submodules.py b/scripts/checkout_submodules.py index 0290182b5b4bff..f212b2832fe18e 100755 --- a/scripts/checkout_submodules.py +++ b/scripts/checkout_submodules.py @@ -28,7 +28,6 @@ 'ameba', 'android', 'asr', - 'bl602', 'bouffalolab', 'cc13xx_26xx', 'cc32xx', @@ -51,6 +50,7 @@ 'genio', 'openiotsdk', 'silabs_docker', + 'bouffalo_sdk' ]) Module = namedtuple('Module', 'name path platforms recursive') diff --git a/src/system/SystemPacketBuffer.h b/src/system/SystemPacketBuffer.h index 5068822c7f22a4..9290b788d93e7e 100644 --- a/src/system/SystemPacketBuffer.h +++ b/src/system/SystemPacketBuffer.h @@ -172,6 +172,8 @@ class DLL_EXPORT PacketBuffer : private pbuf return kMaxSizeWithoutReserve; #elif CHIP_SYSTEM_PACKETBUFFER_FROM_CHIP_HEAP return this->alloc_size; +#elif CHIP_SYSTEM_CONFIG_PACKETBUFFER_LWIP_PBUF_RAM + return LWIP_MEM_ALIGN_SIZE(memp_sizes[this->pool]) - kStructureSize; #elif CHIP_SYSTEM_PACKETBUFFER_FROM_LWIP_CUSTOM_POOL // Temporary workaround for custom pbufs by assuming size to be PBUF_POOL_BUFSIZE if (this->flags & PBUF_FLAG_IS_CUSTOM) diff --git a/third_party/bouffalolab/bouffalo_sdk b/third_party/bouffalolab/bouffalo_sdk new file mode 160000 index 00000000000000..42f58bf8eb9bfd --- /dev/null +++ b/third_party/bouffalolab/bouffalo_sdk @@ -0,0 +1 @@ +Subproject commit 42f58bf8eb9bfde342b1164ca3962096e0838411 diff --git a/third_party/bouffalolab/patches/lwip/lwippools.h b/third_party/bouffalolab/patches/lwip/lwippools.h new file mode 100644 index 00000000000000..e69de29bb2d1d6 diff --git a/third_party/bouffalolab/patches/lwip/mem.c b/third_party/bouffalolab/patches/lwip/mem.c new file mode 100644 index 00000000000000..7d4cb9b9bb8a34 --- /dev/null +++ b/third_party/bouffalolab/patches/lwip/mem.c @@ -0,0 +1,1041 @@ +/** + * @file + * Dynamic memory manager + * + * This is a lightweight replacement for the standard C library malloc(). + * + * If you want to use the standard C library malloc() instead, define + * MEM_LIBC_MALLOC to 1 in your lwipopts.h + * + * To let mem_malloc() use pools (prevents fragmentation and is much faster than + * a heap but might waste some memory), define MEM_USE_POOLS to 1, define + * MEMP_USE_CUSTOM_POOLS to 1 and create a file "lwippools.h" that includes a list + * of pools like this (more pools can be added between _START and _END): + * + * Define three pools with sizes 256, 512, and 1512 bytes + * LWIP_MALLOC_MEMPOOL_START + * LWIP_MALLOC_MEMPOOL(20, 256) + * LWIP_MALLOC_MEMPOOL(10, 512) + * LWIP_MALLOC_MEMPOOL(5, 1512) + * LWIP_MALLOC_MEMPOOL_END + */ + +/* + * Copyright (c) 2001-2004 Swedish Institute of Computer Science. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. The name of the author may not be used to endorse or promote products + * derived from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED + * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT + * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT + * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING + * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY + * OF SUCH DAMAGE. + * + * This file is part of the lwIP TCP/IP stack. + * + * Author: Adam Dunkels + * Simon Goldschmidt + * + */ + +#include "lwip/opt.h" +#include "lwip/mem.h" +#include "lwip/def.h" +#include "lwip/sys.h" +#include "lwip/stats.h" +#include "lwip/err.h" +#include "lwip/pbuf.h" + +#include + +#if MEM_LIBC_MALLOC +#include /* for malloc()/free() */ +#endif + +/* This is overridable for tests only... */ +#ifndef LWIP_MEM_ILLEGAL_FREE +#define LWIP_MEM_ILLEGAL_FREE(msg) LWIP_ASSERT(msg, 0) +#endif + +#define MEM_STATS_INC_LOCKED(x) SYS_ARCH_LOCKED(MEM_STATS_INC(x)) +#define MEM_STATS_INC_USED_LOCKED(x, y) SYS_ARCH_LOCKED(MEM_STATS_INC_USED(x, y)) +#define MEM_STATS_DEC_USED_LOCKED(x, y) SYS_ARCH_LOCKED(MEM_STATS_DEC_USED(x, y)) + +#if MEM_OVERFLOW_CHECK +#define MEM_SANITY_OFFSET MEM_SANITY_REGION_BEFORE_ALIGNED +#define MEM_SANITY_OVERHEAD (MEM_SANITY_REGION_BEFORE_ALIGNED + MEM_SANITY_REGION_AFTER_ALIGNED) +#else +#define MEM_SANITY_OFFSET 0 +#define MEM_SANITY_OVERHEAD 0 +#endif + +#if MEM_OVERFLOW_CHECK || MEMP_OVERFLOW_CHECK +/** + * Check if a mep element was victim of an overflow or underflow + * (e.g. the restricted area after/before it has been altered) + * + * @param p the mem element to check + * @param size allocated size of the element + * @param descr1 description of the element source shown on error + * @param descr2 description of the element source shown on error + */ +void +mem_overflow_check_raw(void *p, size_t size, const char *descr1, const char *descr2) +{ +#if MEM_SANITY_REGION_AFTER_ALIGNED || MEM_SANITY_REGION_BEFORE_ALIGNED + u16_t k; + u8_t *m; + +#if MEM_SANITY_REGION_AFTER_ALIGNED > 0 + m = (u8_t *)p + size; + for (k = 0; k < MEM_SANITY_REGION_AFTER_ALIGNED; k++) { + if (m[k] != 0xcd) { + char errstr[128]; + snprintf(errstr, sizeof(errstr), "detected mem overflow in %s%s", descr1, descr2); + LWIP_ASSERT(errstr, 0); + } + } +#endif /* MEM_SANITY_REGION_AFTER_ALIGNED > 0 */ + +#if MEM_SANITY_REGION_BEFORE_ALIGNED > 0 + m = (u8_t *)p - MEM_SANITY_REGION_BEFORE_ALIGNED; + for (k = 0; k < MEM_SANITY_REGION_BEFORE_ALIGNED; k++) { + if (m[k] != 0xcd) { + char errstr[128]; + snprintf(errstr, sizeof(errstr), "detected mem underflow in %s%s", descr1, descr2); + LWIP_ASSERT(errstr, 0); + } + } +#endif /* MEM_SANITY_REGION_BEFORE_ALIGNED > 0 */ +#else + LWIP_UNUSED_ARG(p); + LWIP_UNUSED_ARG(desc); + LWIP_UNUSED_ARG(descr); +#endif +} + +/** + * Initialize the restricted area of a mem element. + */ +void +mem_overflow_init_raw(void *p, size_t size) +{ +#if MEM_SANITY_REGION_BEFORE_ALIGNED > 0 || MEM_SANITY_REGION_AFTER_ALIGNED > 0 + u8_t *m; +#if MEM_SANITY_REGION_BEFORE_ALIGNED > 0 + m = (u8_t *)p - MEM_SANITY_REGION_BEFORE_ALIGNED; + memset(m, 0xcd, MEM_SANITY_REGION_BEFORE_ALIGNED); +#endif +#if MEM_SANITY_REGION_AFTER_ALIGNED > 0 + m = (u8_t *)p + size; + memset(m, 0xcd, MEM_SANITY_REGION_AFTER_ALIGNED); +#endif +#else /* MEM_SANITY_REGION_BEFORE_ALIGNED > 0 || MEM_SANITY_REGION_AFTER_ALIGNED > 0 */ + LWIP_UNUSED_ARG(p); + LWIP_UNUSED_ARG(desc); +#endif /* MEM_SANITY_REGION_BEFORE_ALIGNED > 0 || MEM_SANITY_REGION_AFTER_ALIGNED > 0 */ +} +#endif /* MEM_OVERFLOW_CHECK || MEMP_OVERFLOW_CHECK */ + +#if MEM_LIBC_MALLOC || MEM_USE_POOLS + +/** mem_init is not used when using pools instead of a heap or using + * C library malloc(). + */ +void +mem_init(void) +{ +} + +/** mem_trim is not used when using pools instead of a heap or using + * C library malloc(): we can't free part of a pool element and the stack + * support mem_trim() to return a different pointer + */ +void * +mem_trim(void *mem, mem_size_t size) +{ + LWIP_UNUSED_ARG(size); + return mem; +} +#endif /* MEM_LIBC_MALLOC || MEM_USE_POOLS */ + +#if MEM_LIBC_MALLOC +/* lwIP heap implemented using C library malloc() */ + +/* in case C library malloc() needs extra protection, + * allow these defines to be overridden. + */ +#ifndef mem_clib_free +#define mem_clib_free free +#endif +#ifndef mem_clib_malloc +#define mem_clib_malloc malloc +#endif +#ifndef mem_clib_calloc +#define mem_clib_calloc calloc +#endif + +#if LWIP_STATS && MEM_STATS +#define MEM_LIBC_STATSHELPER_SIZE LWIP_MEM_ALIGN_SIZE(sizeof(mem_size_t)) +#else +#define MEM_LIBC_STATSHELPER_SIZE 0 +#endif + +/** + * Allocate a block of memory with a minimum of 'size' bytes. + * + * @param size is the minimum size of the requested block in bytes. + * @return pointer to allocated memory or NULL if no free memory was found. + * + * Note that the returned value must always be aligned (as defined by MEM_ALIGNMENT). + */ +void * +mem_malloc(mem_size_t size) +{ + void *ret = mem_clib_malloc(size + MEM_LIBC_STATSHELPER_SIZE); + if (ret == NULL) { + MEM_STATS_INC_LOCKED(err); + } else { + LWIP_ASSERT("malloc() must return aligned memory", LWIP_MEM_ALIGN(ret) == ret); +#if LWIP_STATS && MEM_STATS + *(mem_size_t *)ret = size; + ret = (u8_t *)ret + MEM_LIBC_STATSHELPER_SIZE; + MEM_STATS_INC_USED_LOCKED(used, size); +#endif + } + return ret; +} + +/** Put memory back on the heap + * + * @param rmem is the pointer as returned by a previous call to mem_malloc() + */ +void +mem_free(void *rmem) +{ + LWIP_ASSERT("rmem != NULL", (rmem != NULL)); + LWIP_ASSERT("rmem == MEM_ALIGN(rmem)", (rmem == LWIP_MEM_ALIGN(rmem))); +#if LWIP_STATS && MEM_STATS + rmem = (u8_t *)rmem - MEM_LIBC_STATSHELPER_SIZE; + MEM_STATS_DEC_USED_LOCKED(used, *(mem_size_t *)rmem); +#endif + mem_clib_free(rmem); +} + +#elif MEM_USE_POOLS + +/* lwIP heap implemented with different sized pools */ + +/** + * Allocate memory: determine the smallest pool that is big enough + * to contain an element of 'size' and get an element from that pool. + * + * @param size the size in bytes of the memory needed + * @return a pointer to the allocated memory or NULL if the pool is empty + */ +void * +mem_malloc(mem_size_t size) +{ + void *ret; + struct memp_malloc_helper *element = NULL; + memp_t poolnr; + mem_size_t required_size = size + LWIP_MEM_ALIGN_SIZE(sizeof(struct memp_malloc_helper)); + + for (poolnr = MEMP_POOL_FIRST; poolnr <= MEMP_POOL_LAST; poolnr = (memp_t)(poolnr + 1)) { + /* is this pool big enough to hold an element of the required size + plus a struct memp_malloc_helper that saves the pool this element came from? */ + if (required_size <= memp_pools[poolnr]->size) { + element = (struct memp_malloc_helper *)memp_malloc(poolnr); + if (element == NULL) { + /* No need to DEBUGF or ASSERT: This error is already taken care of in memp.c */ +#if MEM_USE_POOLS_TRY_BIGGER_POOL + /** Try a bigger pool if this one is empty! */ + if (poolnr < MEMP_POOL_LAST) { + continue; + } +#endif /* MEM_USE_POOLS_TRY_BIGGER_POOL */ + MEM_STATS_INC_LOCKED(err); + return NULL; + } + break; + } + } + if (poolnr > MEMP_POOL_LAST) { + LWIP_ASSERT("mem_malloc(): no pool is that big!", 0); + MEM_STATS_INC_LOCKED(err); + return NULL; + } + + /* save the pool number this element came from */ + element->poolnr = poolnr; + /* and return a pointer to the memory directly after the struct memp_malloc_helper */ + ret = (u8_t *)element + LWIP_MEM_ALIGN_SIZE(sizeof(struct memp_malloc_helper)); + +#if MEMP_OVERFLOW_CHECK || (LWIP_STATS && MEM_STATS) + /* truncating to u16_t is safe because struct memp_desc::size is u16_t */ + element->size = (u16_t)size; + MEM_STATS_INC_USED_LOCKED(used, element->size); +#endif /* MEMP_OVERFLOW_CHECK || (LWIP_STATS && MEM_STATS) */ +#if MEMP_OVERFLOW_CHECK + /* initialize unused memory (diff between requested size and selected pool's size) */ + memset((u8_t *)ret + size, 0xcd, memp_pools[poolnr]->size - size); +#endif /* MEMP_OVERFLOW_CHECK */ + return ret; +} + +/** + * Free memory previously allocated by mem_malloc. Loads the pool number + * and calls memp_free with that pool number to put the element back into + * its pool + * + * @param rmem the memory element to free + */ +void +mem_free(void *rmem) +{ + struct memp_malloc_helper *hmem; + + LWIP_ASSERT("rmem != NULL", (rmem != NULL)); + LWIP_ASSERT("rmem == MEM_ALIGN(rmem)", (rmem == LWIP_MEM_ALIGN(rmem))); + + /* get the original struct memp_malloc_helper */ + /* cast through void* to get rid of alignment warnings */ + hmem = (struct memp_malloc_helper *)(void *)((u8_t *)rmem - LWIP_MEM_ALIGN_SIZE(sizeof(struct memp_malloc_helper))); + + LWIP_ASSERT("hmem != NULL", (hmem != NULL)); + LWIP_ASSERT("hmem == MEM_ALIGN(hmem)", (hmem == LWIP_MEM_ALIGN(hmem))); + LWIP_ASSERT("hmem->poolnr < MEMP_MAX", (hmem->poolnr < MEMP_MAX)); + + MEM_STATS_DEC_USED_LOCKED(used, hmem->size); +#if MEMP_OVERFLOW_CHECK + { + u16_t i; + LWIP_ASSERT("MEM_USE_POOLS: invalid chunk size", + hmem->size <= memp_pools[hmem->poolnr]->size); + /* check that unused memory remained untouched (diff between requested size and selected pool's size) */ + for (i = hmem->size; i < memp_pools[hmem->poolnr]->size; i++) { + u8_t data = *((u8_t *)rmem + i); + LWIP_ASSERT("MEM_USE_POOLS: mem overflow detected", data == 0xcd); + } + } +#endif /* MEMP_OVERFLOW_CHECK */ + + /* and put it in the pool we saved earlier */ + memp_free(hmem->poolnr, hmem); +} + +#else /* MEM_USE_POOLS */ +/* lwIP replacement for your libc malloc() */ + +/** + * The heap is made up as a list of structs of this type. + * This does not have to be aligned since for getting its size, + * we only use the macro SIZEOF_STRUCT_MEM, which automatically aligns. + */ +struct mem { + + /** Buffer size used for Matter application */ + mem_size_t mem_size; + + /** index (-> ram[next]) of the next struct */ + mem_size_t next; + /** index (-> ram[prev]) of the previous struct */ + mem_size_t prev; + /** 1: this area is used; 0: this area is unused */ + u8_t used; +#if MEM_OVERFLOW_CHECK + /** this keeps track of the user allocation size for guard checks */ + mem_size_t user_size; +#endif +}; + +/** All allocated blocks will be MIN_SIZE bytes big, at least! + * MIN_SIZE can be overridden to suit your needs. Smaller values save space, + * larger values could prevent too small blocks to fragment the RAM too much. */ +#ifndef MIN_SIZE +#define MIN_SIZE 12 +#endif /* MIN_SIZE */ +/* some alignment macros: we define them here for better source code layout */ +#define MIN_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MIN_SIZE) +#define SIZEOF_STRUCT_MEM LWIP_MEM_ALIGN_SIZE(sizeof(struct mem)) +#define MEM_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MEM_SIZE) + +/** If you want to relocate the heap to external memory, simply define + * LWIP_RAM_HEAP_POINTER as a void-pointer to that location. + * If so, make sure the memory at that location is big enough (see below on + * how that space is calculated). */ +#ifndef LWIP_RAM_HEAP_POINTER +/** the heap. we need one struct mem at the end and some room for alignment */ +LWIP_DECLARE_MEMORY_ALIGNED(ram_heap, MEM_SIZE_ALIGNED + (2U * SIZEOF_STRUCT_MEM)); +#define LWIP_RAM_HEAP_POINTER ram_heap +#endif /* LWIP_RAM_HEAP_POINTER */ + +/** pointer to the heap (ram_heap): for alignment, ram is now a pointer instead of an array */ +static u8_t *ram; +/** the last entry, always unused! */ +static struct mem *ram_end; + +/** concurrent access protection */ +#if !NO_SYS +static sys_mutex_t mem_mutex; +#endif + +#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT + +static volatile u8_t mem_free_count; + +/* Allow mem_free from other (e.g. interrupt) context */ +#define LWIP_MEM_FREE_DECL_PROTECT() SYS_ARCH_DECL_PROTECT(lev_free) +#define LWIP_MEM_FREE_PROTECT() SYS_ARCH_PROTECT(lev_free) +#define LWIP_MEM_FREE_UNPROTECT() SYS_ARCH_UNPROTECT(lev_free) +#define LWIP_MEM_ALLOC_DECL_PROTECT() SYS_ARCH_DECL_PROTECT(lev_alloc) +#define LWIP_MEM_ALLOC_PROTECT() SYS_ARCH_PROTECT(lev_alloc) +#define LWIP_MEM_ALLOC_UNPROTECT() SYS_ARCH_UNPROTECT(lev_alloc) +#define LWIP_MEM_LFREE_VOLATILE volatile + +#else /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ + +/* Protect the heap only by using a mutex */ +#define LWIP_MEM_FREE_DECL_PROTECT() +#define LWIP_MEM_FREE_PROTECT() sys_mutex_lock(&mem_mutex) +#define LWIP_MEM_FREE_UNPROTECT() sys_mutex_unlock(&mem_mutex) +/* mem_malloc is protected using mutex AND LWIP_MEM_ALLOC_PROTECT */ +#define LWIP_MEM_ALLOC_DECL_PROTECT() +#define LWIP_MEM_ALLOC_PROTECT() +#define LWIP_MEM_ALLOC_UNPROTECT() +#define LWIP_MEM_LFREE_VOLATILE + +#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ + +/** pointer to the lowest free block, this is used for faster search */ +static struct mem * LWIP_MEM_LFREE_VOLATILE lfree; + +#if MEM_SANITY_CHECK +static void mem_sanity(void); +#define MEM_SANITY() mem_sanity() +#else +#define MEM_SANITY() +#endif + +#if MEM_OVERFLOW_CHECK +static void +mem_overflow_init_element(struct mem *mem, mem_size_t user_size) +{ + void *p = (u8_t *)mem + SIZEOF_STRUCT_MEM + MEM_SANITY_OFFSET; + mem->user_size = user_size; + mem_overflow_init_raw(p, user_size); +} + +static void +mem_overflow_check_element(struct mem *mem) +{ + void *p = (u8_t *)mem + SIZEOF_STRUCT_MEM + MEM_SANITY_OFFSET; + mem_overflow_check_raw(p, mem->user_size, "heap", ""); +} +#else /* MEM_OVERFLOW_CHECK */ +#define mem_overflow_init_element(mem, size) +#define mem_overflow_check_element(mem) +#endif /* MEM_OVERFLOW_CHECK */ + +static struct mem * +ptr_to_mem(mem_size_t ptr) +{ + return (struct mem *)(void *)&ram[ptr]; +} + +static mem_size_t +mem_to_ptr(void *mem) +{ + return (mem_size_t)((u8_t *)mem - ram); +} + +/** + * "Plug holes" by combining adjacent empty struct mems. + * After this function is through, there should not exist + * one empty struct mem pointing to another empty struct mem. + * + * @param mem this points to a struct mem which just has been freed + * @internal this function is only called by mem_free() and mem_trim() + * + * This assumes access to the heap is protected by the calling function + * already. + */ +static void +plug_holes(struct mem *mem) +{ + struct mem *nmem; + struct mem *pmem; + + LWIP_ASSERT("plug_holes: mem >= ram", (u8_t *)mem >= ram); + LWIP_ASSERT("plug_holes: mem < ram_end", (u8_t *)mem < (u8_t *)ram_end); + LWIP_ASSERT("plug_holes: mem->used == 0", mem->used == 0); + + /* plug hole forward */ + LWIP_ASSERT("plug_holes: mem->next <= MEM_SIZE_ALIGNED", mem->next <= MEM_SIZE_ALIGNED); + + nmem = ptr_to_mem(mem->next); + if (mem != nmem && nmem->used == 0 && (u8_t *)nmem != (u8_t *)ram_end) { + /* if mem->next is unused and not end of ram, combine mem and mem->next */ + if (lfree == nmem) { + lfree = mem; + } + mem->next = nmem->next; + if (nmem->next != MEM_SIZE_ALIGNED) { + ptr_to_mem(nmem->next)->prev = mem_to_ptr(mem); + } + } + + /* plug hole backward */ + pmem = ptr_to_mem(mem->prev); + if (pmem != mem && pmem->used == 0) { + /* if mem->prev is unused, combine mem and mem->prev */ + if (lfree == mem) { + lfree = pmem; + } + pmem->next = mem->next; + if (mem->next != MEM_SIZE_ALIGNED) { + ptr_to_mem(mem->next)->prev = mem_to_ptr(pmem); + } + } +} + +/** + * Zero the heap and initialize start, end and lowest-free + */ +void +mem_init(void) +{ + struct mem *mem; + + LWIP_ASSERT("Sanity check alignment", + (SIZEOF_STRUCT_MEM & (MEM_ALIGNMENT - 1)) == 0); + + /* align the heap */ + ram = (u8_t *)LWIP_MEM_ALIGN(LWIP_RAM_HEAP_POINTER); + /* initialize the start of the heap */ + mem = (struct mem *)(void *)ram; + mem->next = MEM_SIZE_ALIGNED; + mem->prev = 0; + mem->used = 0; + /* initialize the end of the heap */ + ram_end = ptr_to_mem(MEM_SIZE_ALIGNED); + ram_end->used = 1; + ram_end->next = MEM_SIZE_ALIGNED; + ram_end->prev = MEM_SIZE_ALIGNED; + MEM_SANITY(); + + /* initialize the lowest-free pointer to the start of the heap */ + lfree = (struct mem *)(void *)ram; + + MEM_STATS_AVAIL(avail, MEM_SIZE_ALIGNED); + + if (sys_mutex_new(&mem_mutex) != ERR_OK) { + LWIP_ASSERT("failed to create mem_mutex", 0); + } +} + +/* Check if a struct mem is correctly linked. + * If not, double-free is a possible reason. + */ +static int +mem_link_valid(struct mem *mem) +{ + struct mem *nmem, *pmem; + mem_size_t rmem_idx; + rmem_idx = mem_to_ptr(mem); + nmem = ptr_to_mem(mem->next); + pmem = ptr_to_mem(mem->prev); + if ((mem->next > MEM_SIZE_ALIGNED) || (mem->prev > MEM_SIZE_ALIGNED) || + ((mem->prev != rmem_idx) && (pmem->next != rmem_idx)) || + ((nmem != ram_end) && (nmem->prev != rmem_idx))) { + return 0; + } + return 1; +} + +#if MEM_SANITY_CHECK +static void +mem_sanity(void) +{ + struct mem *mem; + u8_t last_used; + + /* begin with first element here */ + mem = (struct mem *)ram; + LWIP_ASSERT("heap element used valid", (mem->used == 0) || (mem->used == 1)); + last_used = mem->used; + LWIP_ASSERT("heap element prev ptr valid", mem->prev == 0); + LWIP_ASSERT("heap element next ptr valid", mem->next <= MEM_SIZE_ALIGNED); + LWIP_ASSERT("heap element next ptr aligned", LWIP_MEM_ALIGN(ptr_to_mem(mem->next) == ptr_to_mem(mem->next))); + + /* check all elements before the end of the heap */ + for (mem = ptr_to_mem(mem->next); + ((u8_t *)mem > ram) && (mem < ram_end); + mem = ptr_to_mem(mem->next)) { + LWIP_ASSERT("heap element aligned", LWIP_MEM_ALIGN(mem) == mem); + LWIP_ASSERT("heap element prev ptr valid", mem->prev <= MEM_SIZE_ALIGNED); + LWIP_ASSERT("heap element next ptr valid", mem->next <= MEM_SIZE_ALIGNED); + LWIP_ASSERT("heap element prev ptr aligned", LWIP_MEM_ALIGN(ptr_to_mem(mem->prev) == ptr_to_mem(mem->prev))); + LWIP_ASSERT("heap element next ptr aligned", LWIP_MEM_ALIGN(ptr_to_mem(mem->next) == ptr_to_mem(mem->next))); + + if (last_used == 0) { + /* 2 unused elements in a row? */ + LWIP_ASSERT("heap element unused?", mem->used == 1); + } else { + LWIP_ASSERT("heap element unused member", (mem->used == 0) || (mem->used == 1)); + } + + LWIP_ASSERT("heap element link valid", mem_link_valid(mem)); + + /* used/unused altering */ + last_used = mem->used; + } + LWIP_ASSERT("heap end ptr sanity", mem == ptr_to_mem(MEM_SIZE_ALIGNED)); + LWIP_ASSERT("heap element used valid", mem->used == 1); + LWIP_ASSERT("heap element prev ptr valid", mem->prev == MEM_SIZE_ALIGNED); + LWIP_ASSERT("heap element next ptr valid", mem->next == MEM_SIZE_ALIGNED); +} +#endif /* MEM_SANITY_CHECK */ + +/** + * Put a struct mem back on the heap + * + * @param rmem is the data portion of a struct mem as returned by a previous + * call to mem_malloc() + */ +void +mem_free(void *rmem) +{ + struct mem *mem; + LWIP_MEM_FREE_DECL_PROTECT(); + + if (rmem == NULL) { + LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_TRACE | LWIP_DBG_LEVEL_SERIOUS, ("mem_free(p == NULL) was called.\n")); + return; + } + if ((((mem_ptr_t)rmem) & (MEM_ALIGNMENT - 1)) != 0) { + LWIP_MEM_ILLEGAL_FREE("mem_free: sanity check alignment"); + LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_free: sanity check alignment\n")); + /* protect mem stats from concurrent access */ + MEM_STATS_INC_LOCKED(illegal); + return; + } + + /* Get the corresponding struct mem: */ + /* cast through void* to get rid of alignment warnings */ + mem = (struct mem *)(void *)((u8_t *)rmem - (SIZEOF_STRUCT_MEM + MEM_SANITY_OFFSET)); + + if ((u8_t *)mem < ram || (u8_t *)rmem + MIN_SIZE_ALIGNED > (u8_t *)ram_end) { + LWIP_MEM_ILLEGAL_FREE("mem_free: illegal memory"); + LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_free: illegal memory\n")); + /* protect mem stats from concurrent access */ + MEM_STATS_INC_LOCKED(illegal); + return; + } +#if MEM_OVERFLOW_CHECK + mem_overflow_check_element(mem); +#endif + /* protect the heap from concurrent access */ + LWIP_MEM_FREE_PROTECT(); + /* mem has to be in a used state */ + if (!mem->used) { + LWIP_MEM_ILLEGAL_FREE("mem_free: illegal memory: double free"); + LWIP_MEM_FREE_UNPROTECT(); + LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_free: illegal memory: double free?\n")); + /* protect mem stats from concurrent access */ + MEM_STATS_INC_LOCKED(illegal); + return; + } + + if (!mem_link_valid(mem)) { + LWIP_MEM_ILLEGAL_FREE("mem_free: illegal memory: non-linked: double free"); + LWIP_MEM_FREE_UNPROTECT(); + LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_free: illegal memory: non-linked: double free?\n")); + /* protect mem stats from concurrent access */ + MEM_STATS_INC_LOCKED(illegal); + return; + } + + /* mem is now unused. */ + mem->used = 0; + + if (mem < lfree) { + /* the newly freed struct is now the lowest */ + lfree = mem; + } + + MEM_STATS_DEC_USED(used, mem->next - (mem_size_t)(((u8_t *)mem - ram))); + + /* finally, see if prev or next are free also */ + plug_holes(mem); + MEM_SANITY(); +#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT + mem_free_count = 1; +#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ + LWIP_MEM_FREE_UNPROTECT(); +} + +/** + * Shrink memory returned by mem_malloc(). + * + * @param rmem pointer to memory allocated by mem_malloc the is to be shrinked + * @param new_size required size after shrinking (needs to be smaller than or + * equal to the previous size) + * @return for compatibility reasons: is always == rmem, at the moment + * or NULL if newsize is > old size, in which case rmem is NOT touched + * or freed! + */ +void * +mem_trim(void *rmem, mem_size_t new_size) +{ + mem_size_t size, newsize; + mem_size_t ptr, ptr2; + struct mem *mem, *mem2; + /* use the FREE_PROTECT here: it protects with sem OR SYS_ARCH_PROTECT */ + LWIP_MEM_FREE_DECL_PROTECT(); + + /* Expand the size of the allocated memory region so that we can + adjust for alignment. */ + newsize = (mem_size_t)LWIP_MEM_ALIGN_SIZE(new_size); + if (newsize < MIN_SIZE_ALIGNED) { + /* every data block must be at least MIN_SIZE_ALIGNED long */ + newsize = MIN_SIZE_ALIGNED; + } +#if MEM_OVERFLOW_CHECK + newsize += MEM_SANITY_REGION_BEFORE_ALIGNED + MEM_SANITY_REGION_AFTER_ALIGNED; +#endif + if ((newsize > MEM_SIZE_ALIGNED) || (newsize < new_size)) { + return NULL; + } + + LWIP_ASSERT("mem_trim: legal memory", (u8_t *)rmem >= (u8_t *)ram && + (u8_t *)rmem < (u8_t *)ram_end); + + if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) { + LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_trim: illegal memory\n")); + /* protect mem stats from concurrent access */ + MEM_STATS_INC_LOCKED(illegal); + return rmem; + } + /* Get the corresponding struct mem ... */ + /* cast through void* to get rid of alignment warnings */ + mem = (struct mem *)(void *)((u8_t *)rmem - (SIZEOF_STRUCT_MEM + MEM_SANITY_OFFSET)); +#if MEM_OVERFLOW_CHECK + mem_overflow_check_element(mem); +#endif + /* ... and its offset pointer */ + ptr = mem_to_ptr(mem); + + size = (mem_size_t)((mem_size_t)(mem->next - ptr) - (SIZEOF_STRUCT_MEM + MEM_SANITY_OVERHEAD)); + LWIP_ASSERT("mem_trim can only shrink memory", newsize <= size); + if (newsize > size) { + /* not supported */ + return NULL; + } + if (newsize == size) { + /* No change in size, simply return */ + return rmem; + } + + /* protect the heap from concurrent access */ + LWIP_MEM_FREE_PROTECT(); + + mem2 = ptr_to_mem(mem->next); + if (mem2->used == 0) { + /* The next struct is unused, we can simply move it at little */ + mem_size_t next; + LWIP_ASSERT("invalid next ptr", mem->next != MEM_SIZE_ALIGNED); + /* remember the old next pointer */ + next = mem2->next; + /* create new struct mem which is moved directly after the shrinked mem */ + ptr2 = (mem_size_t)(ptr + SIZEOF_STRUCT_MEM + newsize); + if (lfree == mem2) { + lfree = ptr_to_mem(ptr2); + } + mem2 = ptr_to_mem(ptr2); + mem2->used = 0; + /* restore the next pointer */ + mem2->next = next; + /* link it back to mem */ + mem2->prev = ptr; + /* link mem to it */ + mem->next = ptr2; + /* last thing to restore linked list: as we have moved mem2, + * let 'mem2->next->prev' point to mem2 again. but only if mem2->next is not + * the end of the heap */ + if (mem2->next != MEM_SIZE_ALIGNED) { + ptr_to_mem(mem2->next)->prev = ptr2; + } + MEM_STATS_DEC_USED(used, (size - newsize)); + /* no need to plug holes, we've already done that */ + } else if (newsize + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED <= size) { + /* Next struct is used but there's room for another struct mem with + * at least MIN_SIZE_ALIGNED of data. + * Old size ('size') must be big enough to contain at least 'newsize' plus a struct mem + * ('SIZEOF_STRUCT_MEM') with some data ('MIN_SIZE_ALIGNED'). + * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty + * region that couldn't hold data, but when mem->next gets freed, + * the 2 regions would be combined, resulting in more free memory */ + ptr2 = (mem_size_t)(ptr + SIZEOF_STRUCT_MEM + newsize); + LWIP_ASSERT("invalid next ptr", mem->next != MEM_SIZE_ALIGNED); + mem2 = ptr_to_mem(ptr2); + if (mem2 < lfree) { + lfree = mem2; + } + mem2->used = 0; + mem2->next = mem->next; + mem2->prev = ptr; + mem->next = ptr2; + if (mem2->next != MEM_SIZE_ALIGNED) { + ptr_to_mem(mem2->next)->prev = ptr2; + } + MEM_STATS_DEC_USED(used, (size - newsize)); + /* the original mem->next is used, so no need to plug holes! */ + } + /* else { + next struct mem is used but size between mem and mem2 is not big enough + to create another struct mem + -> don't do anyhting. + -> the remaining space stays unused since it is too small + } */ +#if MEM_OVERFLOW_CHECK + mem_overflow_init_element(mem, new_size); +#endif + MEM_SANITY(); +#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT + mem_free_count = 1; +#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ + LWIP_MEM_FREE_UNPROTECT(); + return rmem; +} + +/** + * Allocate a block of memory with a minimum of 'size' bytes. + * + * @param size_in is the minimum size of the requested block in bytes. + * @return pointer to allocated memory or NULL if no free memory was found. + * + * Note that the returned value will always be aligned (as defined by MEM_ALIGNMENT). + */ +void * +mem_malloc(mem_size_t size_in) +{ + mem_size_t ptr, ptr2, size; + struct mem *mem, *mem2; +#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT + u8_t local_mem_free_count = 0; +#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ + LWIP_MEM_ALLOC_DECL_PROTECT(); + + if (size_in == 0) { + return NULL; + } + + /* Expand the size of the allocated memory region so that we can + adjust for alignment. */ + size = (mem_size_t)LWIP_MEM_ALIGN_SIZE(size_in); + if (size < MIN_SIZE_ALIGNED) { + /* every data block must be at least MIN_SIZE_ALIGNED long */ + size = MIN_SIZE_ALIGNED; + } +#if MEM_OVERFLOW_CHECK + size += MEM_SANITY_REGION_BEFORE_ALIGNED + MEM_SANITY_REGION_AFTER_ALIGNED; +#endif + if ((size > MEM_SIZE_ALIGNED) || (size < size_in)) { + return NULL; + } + + /* protect the heap from concurrent access */ + sys_mutex_lock(&mem_mutex); + LWIP_MEM_ALLOC_PROTECT(); +#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT + /* run as long as a mem_free disturbed mem_malloc or mem_trim */ + do { + local_mem_free_count = 0; +#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ + + /* Scan through the heap searching for a free block that is big enough, + * beginning with the lowest free block. + */ + for (ptr = mem_to_ptr(lfree); ptr < MEM_SIZE_ALIGNED - size; + ptr = ptr_to_mem(ptr)->next) { + mem = ptr_to_mem(ptr); +#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT + mem_free_count = 0; + LWIP_MEM_ALLOC_UNPROTECT(); + /* allow mem_free or mem_trim to run */ + LWIP_MEM_ALLOC_PROTECT(); + if (mem_free_count != 0) { + /* If mem_free or mem_trim have run, we have to restart since they + could have altered our current struct mem. */ + local_mem_free_count = 1; + break; + } +#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ + + if ((!mem->used) && + (mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size) { + /* mem is not used and at least perfect fit is possible: + * mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */ + + if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >= (size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED)) { + /* (in addition to the above, we test if another struct mem (SIZEOF_STRUCT_MEM) containing + * at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem') + * -> split large block, create empty remainder, + * remainder must be large enough to contain MIN_SIZE_ALIGNED data: if + * mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size, + * struct mem would fit in but no data between mem2 and mem2->next + * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty + * region that couldn't hold data, but when mem->next gets freed, + * the 2 regions would be combined, resulting in more free memory + */ + ptr2 = (mem_size_t)(ptr + SIZEOF_STRUCT_MEM + size); + LWIP_ASSERT("invalid next ptr",ptr2 != MEM_SIZE_ALIGNED); + /* create mem2 struct */ + mem2 = ptr_to_mem(ptr2); + mem2->used = 0; + mem2->next = mem->next; + mem2->prev = ptr; + /* and insert it between mem and mem->next */ + mem->next = ptr2; + mem->used = 1; + + if (mem2->next != MEM_SIZE_ALIGNED) { + ptr_to_mem(mem2->next)->prev = ptr2; + } + MEM_STATS_INC_USED(used, (size + SIZEOF_STRUCT_MEM)); + } else { + /* (a mem2 struct does no fit into the user data space of mem and mem->next will always + * be used at this point: if not we have 2 unused structs in a row, plug_holes should have + * take care of this). + * -> near fit or exact fit: do not split, no mem2 creation + * also can't move mem->next directly behind mem, since mem->next + * will always be used at this point! + */ + mem->used = 1; + MEM_STATS_INC_USED(used, mem->next - mem_to_ptr(mem)); + } +#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT +mem_malloc_adjust_lfree: +#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ + if (mem == lfree) { + struct mem *cur = lfree; + /* Find next free block after mem and update lowest free pointer */ + while (cur->used && cur != ram_end) { +#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT + mem_free_count = 0; + LWIP_MEM_ALLOC_UNPROTECT(); + /* prevent high interrupt latency... */ + LWIP_MEM_ALLOC_PROTECT(); + if (mem_free_count != 0) { + /* If mem_free or mem_trim have run, we have to restart since they + could have altered our current struct mem or lfree. */ + goto mem_malloc_adjust_lfree; + } +#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ + cur = ptr_to_mem(cur->next); + } + lfree = cur; + LWIP_ASSERT("mem_malloc: !lfree->used", ((lfree == ram_end) || (!lfree->used))); + } + LWIP_MEM_ALLOC_UNPROTECT(); + sys_mutex_unlock(&mem_mutex); + LWIP_ASSERT("mem_malloc: allocated memory not above ram_end.", + (mem_ptr_t)mem + SIZEOF_STRUCT_MEM + size <= (mem_ptr_t)ram_end); + LWIP_ASSERT("mem_malloc: allocated memory properly aligned.", + ((mem_ptr_t)mem + SIZEOF_STRUCT_MEM) % MEM_ALIGNMENT == 0); + LWIP_ASSERT("mem_malloc: sanity check alignment", + (((mem_ptr_t)mem) & (MEM_ALIGNMENT - 1)) == 0); + +#if MEM_OVERFLOW_CHECK + mem_overflow_init_element(mem, size_in); +#endif + MEM_SANITY(); + + mem->mem_size = size_in; + if (size_in >= sizeof(struct pbuf)) { + struct pbuf *p_mem = (struct pbuf *)((u8_t *)mem + SIZEOF_STRUCT_MEM + MEM_SANITY_OFFSET); + p_mem->pool = (mem_size_t*)mem - (mem_size_t*)memp_sizes; + } + + lfree->used = 0; + + return (u8_t *)mem + SIZEOF_STRUCT_MEM + MEM_SANITY_OFFSET; + } + } +#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT + /* if we got interrupted by a mem_free, try again */ + } while (local_mem_free_count != 0); +#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ + MEM_STATS_INC(err); + LWIP_MEM_ALLOC_UNPROTECT(); + sys_mutex_unlock(&mem_mutex); + LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SERIOUS, ("mem_malloc: could not allocate %"S16_F" bytes\n", (s16_t)size)); + return NULL; +} + +#endif /* MEM_USE_POOLS */ + +#if MEM_LIBC_MALLOC && (!LWIP_STATS || !MEM_STATS) +void * +mem_calloc(mem_size_t count, mem_size_t size) +{ + return mem_clib_calloc(count, size); +} + +#else /* MEM_LIBC_MALLOC && (!LWIP_STATS || !MEM_STATS) */ +/** + * Contiguously allocates enough space for count objects that are size bytes + * of memory each and returns a pointer to the allocated memory. + * + * The allocated memory is filled with bytes of value zero. + * + * @param count number of objects to allocate + * @param size size of the objects to allocate + * @return pointer to allocated memory / NULL pointer if there is an error + */ +void * +mem_calloc(mem_size_t count, mem_size_t size) +{ + void *p; + size_t alloc_size = (size_t)count * (size_t)size; + + if ((size_t)(mem_size_t)alloc_size != alloc_size) { + LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SERIOUS, ("mem_calloc: could not allocate %"SZT_F" bytes\n", alloc_size)); + return NULL; + } + + /* allocate 'count' objects of size 'size' */ + p = mem_malloc((mem_size_t)alloc_size); + if (p) { + /* zero the memory */ + memset(p, 0, alloc_size); + } + return p; +} + +#endif /* MEM_LIBC_MALLOC && (!LWIP_STATS || !MEM_STATS) */ + +const mem_size_t * memp_sizes = (mem_size_t *)LWIP_RAM_HEAP_POINTER; + +struct pbuf * +pbuf_rightsize(struct pbuf *p, s16_t offset) +{ + LWIP_ASSERT("pbuf_rightsize NOT implemented", 0); + return NULL; +}