-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgroimp_beta_sensitivity.py
46 lines (25 loc) · 1.41 KB
/
groimp_beta_sensitivity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#!/home/renato/anaconda2/bin/python
import numpy as np
import matplotlib.pyplot as plt
import os, sys
from scipy.interpolate import interp2d
from pylab import *
import pandas as pd
for k in range(1,21):
#beta = np.ones(60)
beta = np.empty(94)
beta.fill(k/20.0)
data = np.array([beta]).T
df4 = pd.DataFrame(data)
df4.to_excel("/home/renato/groimp_efficient/beta_1.xls", index=False, header=False)
os.system("java -Xmx2000m -jar /home/renato/Downloads/GroIMP-1.5/core.jar --headless /home/renato/Downloads/FSPM_BASIC-master-transpired-efficient/project.gs")
df0 = pd.read_csv('/home/renato/groimp_efficient/field.txt',
delim_whitespace=True,skiprows=1,header=None,
names=["time", "species", "LAI", "nrShoots", "fAbs", "assCO2", "biomAbove", "yield", "harvestIndex","leafArea","fieldRFR"])
df0.to_csv('/home/renato/groimp_efficient/beta_sensitivity/field_gday_%s.txt' %k ,sep='\t', index=False, header=None)
df0 = pd.read_csv('/home/renato/groimp_efficient/plant.txt',
delim_whitespace=True,skiprows=1,header=None,
names=["time", "tt", "plant", "strip", "row", "pos", "species", "weed",
"age","nrbranches","leafArea","fpar","rfr","biom","yield","leafmass",
"stemmass", "rootmass","shootrootratio","abovebiom","transpiration"])
df0.to_csv('/home/renato/groimp_efficient/beta_sensitivity/plant_gday_%s.txt' %k ,sep='\t', index=False, header=None)