-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsam_from_clust_uniqued.py
executable file
·354 lines (279 loc) · 11.6 KB
/
sam_from_clust_uniqued.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
#!/usr/bin/env python
'''
given a SORTED file containing uniqued lines (see preprocess_radtag_lane.py) with cluster and node label prepended
computes multiple alignments across all cluster sequences and outputs SAM formatted alignments taking the most prevalent longest sequence as reference.
'''
import os, sys, re
import musclemap
from collections import defaultdict
from config import RTDROOT
def next_cluster_lines(fh):
this_cl = None
cl_lines = []
for l in fh:
if l.split()[0] != this_cl:
if this_cl is not None:
return cl_lines
else:
this_cl = l.split()[0]
cl_lines.append(l)
else:
cl_lines.append(l)
def samline_from_alnpair(rname,raln,qname,qaln,qqual):
if set(qqual) == set(['#']):
return None
leader,qseq = re.search('^(-*)(.*?)$',qaln).groups()
pos = len(leader)+1
cigar = []
nm = 0
md = []
qi = 0
for r,q in zip(raln[len(leader):].upper(),qseq.rstrip('-').upper()):
if q != '-':
qq = qqual[qi]
qi += 1
else:
qq = None
if qq == '#' or q == 'N' or r =='N':
cigar.append('S')
elif r in ['A','C','G','T'] and q in ['A','C','G','T']:
cigar.append('M')
if r != q:
nm += 1
md.append(r)
else:
md.append(1)
elif r == '-' and q == '-':
cigar.append('P')
elif r == '-':
cigar.append('I')
nm += 1
elif q == '-':
cigar.append('D')
nm += 1
md.append('^'+r)
#print ''.join(cigar)
if 'S' in ''.join(cigar).strip('S'):
return None
#figure out cigar
ccnt = 1
cli = []
cstate = None
for c in cigar:
if cstate == c:
ccnt += 1
else:
if cstate is not None:
cli.append('%d%s' % (ccnt,cstate))
cstate = c
ccnt = 1
cli.append('%d%s' % (ccnt,cstate))
cstr = ''.join(cli)
#figure out md
mdli = []
mddel = []
mdcnt = 0
for c in md+['A']:
if isinstance(c,int):
mdcnt += c
if len(mddel) > 0:
mdli.append('^'+(''.join(mddel)))
mddel = []
else:
if mdcnt:
mdli.append(str(mdcnt))
mdcnt = 0
if c.startswith('^'):
mddel.append(c[1:])
else:
if len(mddel) > 0:
mdli.append('^'+(''.join(mddel)))
mddel = []
mdli.append(c)
mdstr = ''.join(mdli[:-1])
if mdstr == '':
mdstr = '0'
return '\t'.join([qname,'0',rname,str(pos),'30',cstr,'*','0','0',qaln.replace('-',''), qqual, 'NM:i:%s\tMD:Z:%s' % (nm,mdstr)])
def ref_seq_from_clust(clname,cl_aln):
ref_seq = cl_aln[0][1].replace('-','')
fa_str = '>%s\n%s\n' % (clname,ref_seq)
return fa_str
def indiv_in_clust(cl_lines,rep_cut = 0):
if isinstance(cl_lines[0],str):
cl_lines = [l.strip().split() for l in cl_lines]
ind_cts = defaultdict(int)
for l in cl_lines:
for ind,ct in zip( l[5].split(','), [int(i) for i in l[6].split(',')] ):
if ct >= rep_cut:
ind_cts[ind] += ct
return ind_cts
def aln_from_clust(clname,cl_lines,keep_seqs=None,seq_len=0,break_on_error=True):
if isinstance(cl_lines[0],str):
cl_lines = [l.strip().split() for l in cl_lines]
if keep_seqs is not None and len(cl_lines) > keep_seqs:
orig_ind_ct = indiv_in_clust(cl_lines)
orig_ind = len(indiv_in_clust(cl_lines))
orig_len = len(cl_lines)
cl_lines.sort(key = lambda l: (len(l[5].split(',')),sum([int(i) for i in l[6].split(',')]), len(l[2])),reverse=True)
cl_lines = cl_lines[:keep_seqs]
now_ind = len(indiv_in_clust(cl_lines))
now_len = len(cl_lines)
drop_indiv = set(orig_ind_ct.keys()) - set(indiv_in_clust(cl_lines).keys())
#summarize!
print >> sys.stderr, '\tcluster %s abbreviated: orig %s lines, %s indiv now %s lines, %s indiv (dropped: %s)' % \
(clname, orig_len, orig_ind, now_len, now_ind,[(ind,orig_ind_ct[ind]) for ind in drop_indiv])
cl_seqs = [l[2] for l in cl_lines]
cl_nodes = [l[1] for l in cl_lines]
#20110919 qscore translation functionality moved to get_uniqued_lines_by_cluster.py
cl_quals = [l[4] for l in cl_lines]
if seq_len != 0: #truncate sequences
cl_seqs = [s[:seq_len] for s in cl_seqs]
cl_quals = [s[:seq_len] for s in cl_quals]
lastnode = None
cl_node_ids = []
for node in cl_nodes:
if node != lastnode:
ct = 0
lastnode = node
else:
ct += 1
cl_node_ids.append('%s.%03d' % (node,ct))
try:
cl_aln = sorted( zip( cl_node_ids, \
musclemap.muscle(cl_seqs,1), \
cl_quals, \
[zip( l[5].split(','), [int(i) for i in l[6].split(',')] ) for l in cl_lines] ) , \
key=lambda x: (len(x[1].replace('-','').replace('N','')),len(x[3]),len(x[2].replace('#',''))),reverse=True)
except:
print >> sys.stderr, 'alignment failed for cluster %s (%s lines)' % (clname,len(cl_lines))
if break_on_error:
raise
else:
print >> sys.stderr, '--skip_errors requested; proceeding'
return None
return cl_aln
def write_sam_from_aln(clname,cl_aln,rg_dict,samheader_fh,sambody_fh,ref_fh):
raln = cl_aln[0][1]
#sbfh = open(samfile+'.body','w')
#rofh = open(ref_fasta_file,'w')
rseq = ref_seq_from_clust(clname,cl_aln)
ref_fh.write(rseq)
#headers (@SQ lines)
headline = '@SQ\tSN:%s\tLN:%s\n' % (clname,len(cl_aln[0][2]))
samheader_fh.write(headline)
#body
for qname,qaln,qqual,inds_cts in cl_aln:
samline = samline_from_alnpair(clname,raln,qname,qaln,qqual)
if samline is None: continue
samfields = samline.split()
rg_lane = qname.split('.')[1]
#try:
# if any([len(el) != 2 for el in inds_cts]):
# print inds_cts
#except:
# print cl_aln
for ind,ct in inds_cts:
rg = '%s_%s' % (ind,rg_lane)
rg_dict[rg] = ind
for i in range(ct):
this_samline = '\t'.join([samfields[0]+'.%s.%04d' % (ind,i)] + samfields[1:])
sambody_fh.write('%s\tRG:Z:%s\n' % (this_samline,rg))
def calc_cluster_dirt(cl_lines):
cl_ind_ct = defaultdict(list)
for l in cl_lines:
f = l.split()
for ind,ct in zip(f[5].split(','),f[6].split(',')):
cl_ind_ct[(ind,f[1].split('.')[1])].append(int(ct))
totct = sum([sum(v) for v in cl_ind_ct.values()])
dirtct = sum([sum(sorted(v,reverse=True)[2:]) for v in cl_ind_ct.values()])
ctdirt = dirtct/float(totct)
return ctdirt
if __name__ == '__main__':
import argparse
ds = ' [%(default)s]'
#create command line parser
parser = argparse.ArgumentParser(description='generates SAM/BAM by multiple alignment within graph clusters')
parser.add_argument('-d','--clust_dirt_max',default=0.10,type=float,help='cluster "dirt" threshold for processing (see documentation)'+ds)
parser.add_argument('-i','--min_indiv',default=20,type=int,help='minimum number of individuals with at least one sequence in a cluster to include cluster'+ds)
parser.add_argument('-k','--keep_seqs',default=100,type=int,help='only retain this many sequences for processing'+ds)
parser.add_argument('-l','--seq_len',default=0,type=int,help='arbitrarily truncate sequences in SAM/BAM output at this length if not 0'+ds)
parser.add_argument('-cs','--calc_only',action='store_true',help='calculate cluster statistics at supplied thresholds; do not generate alignments'+ds)
parser.add_argument('-s','--skip_errors',action='store_true',help=''+ds)
parser.add_argument('cluniq',help='sorted .cluniq file containing cluster-associated unique sequences')
parser.add_argument('fbase',help='basename for output files')
opts = parser.parse_args()
cluniq = opts.cluniq
fbase = opts.fbase
clust_dirt_max = opts.clust_dirt_max
min_indiv = opts.min_indiv
keep_seqs = opts.keep_seqs
seq_len = opts.seq_len
fdir = os.path.dirname(fbase)
try:
os.makedirs(fdir)
except:
pass
if opts.skip_errors:
break_on_error = False
print >> sys.stderr, 'skip_errors invoked; problem clusters will be skipped entirely'
else:
break_on_error = True
print >> sys.stderr, 'skip_errors not set; problem clusters will halt analysis'
fh = open(cluniq)
if not opts.calc_only:
samheader_fh = open(fbase+'.sam.header','w')
sambody_fh = open(fbase+'.sam.body','w')
ref_fh = open(fbase+'.fa','w')
clstats_fh = open(fbase+'.clstats','w')
rg_dict = {}
this_cl = None
cl_lines = []
cl_on = 0
for l in fh:
if l.split()[0] != this_cl:
if this_cl is not None:
cl_dirt = calc_cluster_dirt(cl_lines)
cl_indiv = len(indiv_in_clust(cl_lines))
clstats_fh.write('%s\t%s\t%s\t%s\n' % (this_cl,len(cl_lines),cl_indiv,cl_dirt))
if cl_on % 100 == 0: print >> sys.stderr, '%s\tcluster: %s\tunique seqs: %s\tindiv: %s\tdirt: %s' % (cl_on,this_cl,len(cl_lines),cl_indiv,cl_dirt)
if not opts.calc_only and cl_dirt < clust_dirt_max and cl_indiv >= min_indiv:
cl_aln = aln_from_clust(this_cl,cl_lines,keep_seqs,seq_len,break_on_error)
write_sam_from_aln(this_cl,cl_aln,rg_dict,samheader_fh,sambody_fh,ref_fh)
cl_on += 1
this_cl = l.split()[0]
cl_lines = []
cl_lines.append(l)
clstats_fh.write('%s\t%s\t%s\t%s\n' % (this_cl,len(cl_lines),cl_indiv,cl_dirt))
if not opts.calc_only:
cl_aln = aln_from_clust(this_cl,cl_lines,keep_seqs)
if cl_aln is not None and calc_cluster_dirt(cl_lines) < clust_dirt_max and len(indiv_in_clust(cl_lines)) >= min_indiv:
write_sam_from_aln(this_cl,cl_aln,rg_dict,samheader_fh,sambody_fh,ref_fh)
clstats_fh.close()
os.system(os.path.join(RTDROOT,'plot_error.py %s > %s' % (fbase+'.clstats',fbase+'.clstats.cdest' )))
#finish headers (@RG lines)
if not opts.calc_only:
if len(rg_dict) == 0:
print >> sys.stderr, 'readgroup dict is empty; no individuals included in final dataset. Check number of individuals and cluster dirt cutoffs and re-run'
print >> sys.stderr, 'close output files ...',
samheader_fh.close()
sambody_fh.close()
ref_fh.close()
print >> sys.stderr, 'done.\nremove output files ...',
os.unlink(samheader_fh.name)
os.unlink(sambody_fh.name)
os.unlink(ref_fh.name)
print >> sys.stderr, 'done'
sys.exit(1)
for rg in rg_dict:
headline = '@RG\tID:%s\tPL:Illumina\tLB:%s\tSM:%s\n' % (rg,rg_dict[rg],rg_dict[rg])
samheader_fh.write(headline)
samheader_fh.close()
sambody_fh.close()
ref_fh.close()
print >> sys.stderr, 'index reference'
os.system('samtools faidx %s.fa' % (fbase))
print >> sys.stderr, 'add headers and sort'
os.system('cat %s.sam.header %s.sam.body | samtools view -bS - | samtools sort - %s' % (fbase,fbase,fbase))
print >> sys.stderr, 'index bam'
os.system('samtools index %s.bam' % (fbase))
print >> sys.stderr, 'done'