-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathvcf_to_rqtl_DB.py
executable file
·197 lines (163 loc) · 7.69 KB
/
vcf_to_rqtl_DB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#!/usr/bin/env python
'''invocation:
vcf_to_rqtl.py path_to_vcf.vcf "P" Q G
where:
P = comma-separated pair of prefixes identifying cross founder species/strains
for instance, if founding parents of strain "BW" are BW01, BW02, BW03
and founding parents of strain "PO" are PO01,PO02,PO03,
this paramter would be "BW,PO"
Q = GATK "QD" score threshold for inclusion
G = individual genotype call quality threshold
'''
# functionality from short_read now copied here
#from short_read_analysis import variant_detection,extract_genotypes_from_mclgr
import os,sys,re,numpy
from collections import defaultdict
import HTSeq,random,sys
from collections import defaultdict
from rtd import preprocess_radtag_lane
def sample_data_from_DB(sampleids, mousedb = 'Hoekstra lab mouse database'):
td = preprocess_radtag_lane.no_net_get_table_as_dict(mousedb)
ped = dict([ (d['id'], (d['damid'],d['sireid'])) \
for d in td \
if d.get('id','') in sampleids \
and d.has_key('sireid') \
and d.has_key('damid')])
ped_parents = reduce(lambda x,y:x+y,ped.values())
ped.update(dict([ (d['id'],(d['damid'],d['sireid'])) \
for d in td \
if d.get('id','') in ped_parents \
and d.has_key('sireid') \
and d.has_key('damid')]))
recombinants = [d['id'] for d in td if d.get('id','') in ped.keys() \
and ',' in d['damstrain'] and ',' in d['sirestrain']]
parents = []
for f2 in recombinants:
for f1 in ped[f2]:
for g0 in ped[f1]:
parents.append(g0)
parents = list(set(parents))
parents_spp = dict([(d['id'],d['damstrain']) for d in td if d.get('id','') in parents])
parents_spp
return ped, recombinants, parents, parents_spp
def species_tests_by_family(ped, recombinants, parents_spp):
tests = defaultdict(list)
for f2 in recombinants:
g0_by_spp = defaultdict(list)
for f1 in ped[f2]:
for g0 in ped[f1]:
g0_by_spp[parents_spp[g0]].append(g0)
k = tuple([tuple(set(g0_by_spp[spp])) for spp in sorted(g0_by_spp.keys())])
tests[k].append(f2)
return tests
def default_cut_fn(vc):
#consider adding ReadPosRankSum > -9
accept = len(vc.alt) == 1 \
and vc.info.get('QD',0) >= 5
return accept
def cross_genotypes_from_htseq_vcf(vcfr, tests, cut_fn=default_cut_fn, gq_cut=20):
genotypes = defaultdict(dict)
loci = []
for i,vc in enumerate(vcfr):
#THIS LIKELY FAILS IF make_info_dict() hasn't been run...
vc.unpack_info(vcfr.infodict)
if i % 10000 == 0: print >> sys.stderr, '\r',i,len(loci),'found',
if not cut_fn(vc): continue
loc = '%s.%s' % (vc.pos.chrom,vc.pos.start)
for (pA,pB),inds in tests.items():
pAa = set()
pBa = set()
if any([float(vc.samples[g0].get('GQ',0)) < gq_cut for g0 in pA + pB]): continue
for pAi in pA:
alleles = vc.samples[pAi]['GT'].split('/')
pAa = pAa.union(set(alleles))
for pBi in pB:
alleles = vc.samples[pBi]['GT'].split('/')
pBa = pBa.union(set(alleles))
if not '.' in pAa and not '.' in pBa and len(pAa) == 1 and len(pBa) == 1 and len(pAa.intersection(pBa)) == 0:
gt_lookup = {list(pAa)[0]: 'A', list(pBa)[0]:'B'}
for f2 in inds:
if float(vc.samples[f2].get('GQ',0)) < gq_cut: continue
gt = ''.join([gt_lookup[a] for a in vc.samples[f2]['GT'].split('/')])
genotypes[f2][loc] = gt
if len(loci) and loci[-1] == loc:
pass
else:
loci.append(loc)
return loci, genotypes
def output_cross_radtag_genotypes(loci,genotypes,filename,lg0='X'):
'''Given list loci and dictionary genotype per genotypes_by_parent, writes file <filename>
suitable for RQTL
overloads 20101202:
- if loci is a dict per maploci from load_cross_radtag_genotypes below, sort by map position in output
- if filename is not string, use as filehandle (permits passing sys.stdout, for instance)
'''
def sortkey(x):
if x == '':
return 0
else:
return x
if isinstance(loci,list):
locnames = loci
lgs = ['1' for i in range(len(loci))]
mps = [str(i+1) for i in range(len(loci))]
elif isinstance(loci,dict):
for k,v in loci.items():
if v[0] == 0:
loci[k] = (lg0,v[1])
locnames,lgs,mps = zip(*[(loc,str(lg),str(mp)) for loc,(lg,mp) in sorted(loci.items(),key=lambda x:[sortkey(v) for v in x[1]])])
mID_lookup = dict([(m,str(i)) for i,m in enumerate(sorted(genotypes.keys()))])
if isinstance(filename,str):
fh = open(filename ,'w')
#open(filename+'.mIDlookup','w').write('\n'.join(['%s\t%s' % (i,m) for m,i in sorted(mID_lookup.items())]))
else:
fh = filename
#open(filename.name+'.mIDlookup','w').write('\n'.join(['%s\t%s' % (i,m) for m,i in sorted(mID_lookup.items())]))
fh.write('ID,')
fh.write(','.join(['%sr' % l for l in locnames]))
fh.write('\n')
fh.write(',')
fh.write(','.join(lgs))
fh.write('\n')
fh.write(',')
fh.write(','.join(mps))
fh.write('\n')
out_geno = {}
for mID in genotypes.keys():
#fh.write(mID_lookup[mID]+',')
fh.write(mID+',')
out_geno[mID] = dict([(mkr,genotypes[mID][mkr]) for mkr in locnames if genotypes[mID].has_key(mkr)])
fh.write(','.join([genotypes[mID].get(mkr,'-') for mkr in locnames]))
fh.write('\n')
fh.close()
return out_geno,mID_lookup
if __name__ == "__main__":
#vcfn,qd,gq,chi2crit = sys.argv[1:]
vcfn,outbase,gq,fract_max = sys.argv[1:5]
gq = float(gq)
fract_max = float(fract_max)
#outbase = os.path.splitext(vcfn)[0]
vcfr = HTSeq.VCF_Reader(vcfn)
vcfr.parse_meta()
vcfr.make_info_dict()
ped, recombinants, parents, parents_spp = sample_data_from_DB(vcfr.sampleids)
tests = species_tests_by_family(ped, recombinants, parents_spp)
polarized_loci,polarized_geno = cross_genotypes_from_htseq_vcf(vcfr, tests, gq_cut=gq)
loc_counts = dict([(loc,sum([polarized_geno[ind].has_key(loc) for ind in recombinants])) for loc in polarized_loci])
mct = max(loc_counts.values())
keep_sites = [k for k,v in loc_counts.items() if v > mct*fract_max]
print >> sys.stderr, '\n\nfound %s sites with max count %s individuals. Require %s, keeping %s' % (len(polarized_loci), mct, mct*fract_max, len(keep_sites))
#chi2-free output:
ret = output_cross_radtag_genotypes(keep_sites,polarized_geno,'%s_GQ%s_%sind.csv' % (outbase,gq,fract_max))
""" #ditch chi2
print >> sys.stderr, 'filter X linked, chi2 critical %s' % chi2crit
xsites,autsites = extract_genotypes_from_mclgr.filter_Xlinked_loci(polarized_loci, polarized_geno,float(chi2crit))
print >> sys.stderr, '%s X linked, %s autosomal' % (len(xsites),len(autsites))
print >> sys.stderr, 'write output'
ret = extract_genotypes_from_mclgr.output_cross_radtag_genotypes(xsites,polarized_geno,'%s_QD%s-GQ%s_%sbp_Xchi%s.csv' % (outbase,qd,gq,site_before,chi2crit))
ret = extract_genotypes_from_mclgr.output_cross_radtag_genotypes(autsites,polarized_geno,'%s_QD%s-GQ%s_%sbp_autchi%s.csv' % (outbase,qd,gq,site_before,chi2crit))
print >> sys.stderr, 'wrote:'
print >> sys.stderr, '%s_QD%s-GQ%s_%sbp_Xchi%s.csv' % (outbase,qd,gq,site_before,chi2crit)
print >> sys.stderr, '%s_QD%s-GQ%s_%sbp_autchi%s.csv' % (outbase,qd,gq,site_before,chi2crit)
print >> sys.stderr, 'done'
"""