-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodal_entrypoint.py
80 lines (69 loc) · 2.27 KB
/
modal_entrypoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
from loguru import logger
import modal
import modal.gpu
import subprocess
import signal
import sys
from scripts.modal_definitions import (
SMOLMODELS_IMAGE,
format_timeout,
app,
MODELS_VOLUME_PATH,
MODEL_WEIGHTS_VOLUME,
)
from trl_wrapper.trainer_wrapper import CONFIGS, TrainerWrapper
from generate import main as generate_main
DATASET_VOLUME_PATH = os.path.join(MODELS_VOLUME_PATH.as_posix(), "dataset_files")
@app.function(
image=SMOLMODELS_IMAGE,
gpu="A100:2",
secrets=[modal.Secret.from_name("smolmodels")],
volumes={MODELS_VOLUME_PATH.as_posix(): MODEL_WEIGHTS_VOLUME},
timeout=format_timeout(hours=5),
)
def training(config: str = "grpo_connections"):
assert config in CONFIGS, f"Unknown config: {config}"
cfg = CONFIGS[config]
vllm_process = None
if cfg.tuning_mode == "grpo":
cmd = (
f"uv run trl vllm-serve --model {cfg.model_id_or_path} --max_model_len 8192"
)
cmd_list = cmd.split()
logger.info(f"Starting vLLM server, cmd: {cmd_list}")
env = os.environ.copy()
env["CUDA_VISIBLE_DEVICES"] = "1"
vllm_process = subprocess.Popen(
cmd_list,
stdout=sys.stdout,
stderr=sys.stdout,
env=env,
)
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
def cleanup():
if vllm_process:
vllm_process.terminate()
vllm_process.wait()
signal.signal(signal.SIGTERM, lambda signo, frame: cleanup())
signal.signal(signal.SIGINT, lambda signo, frame: cleanup())
try:
wrapper = TrainerWrapper(cfg, use_wandb=True, modal=True)
wrapper.init_model()
wrapper.init_data_module(dataset_root_path=DATASET_VOLUME_PATH)
wrapper.init_trainer(config)
logger.info(f"Starting training, config: {config}")
wrapper.train()
finally:
cleanup()
@app.function(
image=SMOLMODELS_IMAGE,
secrets=[modal.Secret.from_name("smolmodels")],
volumes={MODELS_VOLUME_PATH.as_posix(): MODEL_WEIGHTS_VOLUME},
timeout=format_timeout(hours=12),
)
def generation():
logger.info(
f"Dataset root path: {DATASET_VOLUME_PATH} contents: {os.listdir(DATASET_VOLUME_PATH)}"
)
generate_main(task_name="backtranslate_best_of_n", run_mode="modal")