-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtranslate.py
64 lines (51 loc) · 2.06 KB
/
translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# translate.py
import numpy as np
from tensorflow.keras.models import load_model
import pickle
from tensorflow.keras.preprocessing.sequence import pad_sequences
# Load tokenizer
with open('dataset/tokenizer.pkl', 'rb') as f:
tokenizer = pickle.load(f)
# Load trained model in Keras Native format
model = load_model('models/indonesia_sambas_transformer.keras')
# Hyperparameters
embedding_dim = 512
num_heads = 8
ff_dim = 2048
num_layers = 4
vocab_size = len(tokenizer.word_index) + 1
max_input_len = 20 # Sesuaikan dengan panjang maksimum input pada pelatihan
# Translate function
def translate(input_text, source_lang, target_lang):
# Add language tokens
input_text = f"<{source_lang}> {input_text}"
target_prefix = f"<{target_lang}>"
# Tokenize input text
input_seq = tokenizer.texts_to_sequences([input_text])
input_seq = pad_sequences(input_seq, maxlen=max_input_len, padding='post')
# Generate empty target sequence of length 1
target_seq = np.zeros((1, 1))
target_seq[0, 0] = tokenizer.word_index.get(target_prefix, 0)
stop_condition = False
decoded_sentence = ''
while not stop_condition:
output_tokens = model.predict([input_seq, target_seq])
# Sample a token
sampled_token_index = np.argmax(output_tokens[0, -1, :])
sampled_word = tokenizer.index_word.get(sampled_token_index, '<UNK>')
decoded_sentence += ' ' + sampled_word
# Exit condition
if sampled_word == '<end>' or len(decoded_sentence.split()) > max_input_len:
stop_condition = True
# Update target sequence
target_seq = np.zeros((1, 1))
target_seq[0, 0] = sampled_token_index
return decoded_sentence.strip().replace('<end>', '')
# Test translation
input_text = "apa yang kamu lakukan?"
translated_text = translate(input_text, source_lang="id", target_lang="sambas")
print(f"Input: {input_text}")
print(f"Translated: {translated_text}")
# Reverse translation
reverse_text = translate(translated_text, source_lang="sambas", target_lang="id")
print(f"Reverse Translated: {reverse_text}")