-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSomeJuliaIssues.txt
197 lines (114 loc) · 4.6 KB
/
SomeJuliaIssues.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# Julia Issues
## No.:
## Title:
## https links:
1.
Why I no longer recommend Julia
https://yuri.is/not-julia/
Yuri Vishnevsky - crafting tools for the information age
https://yuri.is
Correctness and composability bugs in the Julia ecosystem (yuri.is)
https://news.ycombinator.com/item?id=31396861
StefanKarpinski
https://news.ycombinator.com/item?id=31401490
KenoFischer
https://news.ycombinator.com/item?id=31398796
ChrisRackauckas
https://news.ycombinator.com/item?id=31397499
ViralBShah
https://news.ycombinator.com/item?id=31397253
2.
Why I no longer recommend Julia
https://www.econjobrumors.com/topic/why-i-no-longer-recommend-julia
https://www.econjobrumors.com/topic/why-i-no-longer-recommend-julia/page/2
This is what happens when academics develop programming languages
I prefer Yulias to Julias.
3.
Explicitly Parameterized Neural Networks in Julia
https://github.com/avik-pal/Lux.jl
Lux is a julia deep learning framework which decouples models and parameterization using deeply nested named tuples.
https://lux.csail.mit.edu/dev/
4.
Julia bindings for the Enzyme automatic differentiator
https://github.com/EnzymeAD/Enzyme.jl
The Enzyme High-Performance Automatic Differentiator of LLVM
https://enzyme.mit.edu
5.
JuliaLang: The Ingredients for a Composable Programming Language
https://www.oxinabox.net/2020/02/09/whycompositionaljulia.html
6.
Announcing composable multi-threaded parallelism in Julia
https://julialang.org/blog/2019/07/multithreading/
7.
Using Julia
https://www.carc.usc.edu/user-information/user-guides/software-and-programming/julia
# Installing and using Julia
cd $HOME
wget https://julialang-s3.julialang.org/bin/linux/x64/1.7/julia-1.7.2-linux-x86_64.tar.gz
tar -xf julia-1.7.2-linux-x86_64.tar.gz
rm julia-1.7.2-linux-x86_64.tar.gz
export PATH=$HOME/julia-1.7.2/bin:$PATH
# Running Julia in interactive mode
To run Julia interactively on a login node, enter juliaand this will start a new Julia REPL session.
Note: Using Julia on a login node should be reserved for installing packages.
A common mistake for new users of HPC clusters is to run heavy workloads directly on a login node
(e.g., discovery.usc.eduor endeavour.usc.edu).
Unless you are only running a small test, please make sure to run your program as a job interactively on a compute node.
Processes left running on login nodes may be terminated without warning.
For more information on jobs, see our Running Jobs user guide.
Using Julia interactively on a compute node is useful for more intensive work like exploring data, testing models, and debugg
# Running Julia in batch mode
To run Julia in batch mode, there are a few steps to follow:
1. Create a Julia script
2. Create a Slurm job script that runs the Julia script
3. Submit the job script using Slurm's sbatchcommand
# Installing Julia packages
# Parallel programming with Julia
Package Purpose
Base.Threads For explicit multi-threading
Distributed For explicit multi-processing
MPI.jl For interfacing to MPI libraries
DistributedArrays.jl For working with distributed arrays
Elemental.jl For distributed linear algebra
ClusterManagers.jl For launching jobs via cluster job schedulers (e.g., Slurm)
Dagger.jl For asynchronous evaluations and workflows
CUDA.jl For interfacing to Nvidia CUDA GPUs
8.
This is the website for the JuliaHealth organization
https://juliahealth.org
https://github.com/JuliaHealth
9.
JuliaRobotics
https://github.com/JuliaRobotics
https://juliarobotics.org
https://github.com/JuliaRobotics/Caesar.jl
https://juliarobotics.org/Caesar.jl/latest/faq/
https://juliarobotics.org/Caesar.jl/latest/concepts/concepts/#Why/Where-does-non-Gaussian-data-come-from?-1
10.
probabilistic-programming
https://github.com/topics/probabilistic-programming?l=julia
WIP successor to Soss.jl
https://github.com/cscherrer/Tilde.jl
Probabilistic Modeling with Tilde.jl
https://informativeprior.com/blog/2022/03-21-tilde/index.html
11.
JuliaLogging
https://github.com/JuliaLogging
https://julialogging.github.io
https://docs.julialang.org/en/v1/stdlib/Logging/
https://discourse.julialang.org/t/confused-about-logging/34945
12.
Recent Criticisms of Julia
https://www.jesseperla.com/post/julia-criticism/
13.
Packages, Testing, and Continuous Integration
https://julia.quantecon.org/software_engineering/testing.html
14.
A Grab Bag of Data Sources
https://www.jesseperla.com/post/data-sources/
15.
ECON 408: Computational and Quantitative Macroeconomics
https://www.jesseperla.com/post/computational-macro/
#
git remote -v
git push main-websocket office-websocket