-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathliterature.bib
474 lines (437 loc) · 15.8 KB
/
literature.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
@article{gaussian_bounds,
issn = {00034851},
url = {http://www.jstor.org/stable/2235868},
author = {Robert D. Gordon},
journal = {The Annals of Mathematical Statistics},
number = {3},
pages = {364--366},
publisher = {Institute of Mathematical Statistics},
title = {Values of Mills' Ratio of Area to Bounding Ordinate and of the Normal Probability Integral for Large Values of the Argument},
volume = {12},
year = {1941}
}
@inproceedings{feldman-langberg-coresets,
author = {Feldman, Dan and Langberg, Michael},
title = {A Unified Framework for Approximating and Clustering Data},
year = {2011},
isbn = {9781450306911},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/1993636.1993712},
doi = {10.1145/1993636.1993712},
booktitle = {Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing},
pages = {569–578},
numpages = {10},
keywords = {regression, clustering, pca, pac-learning, epsilon-approximation, svd, k-means, k-median, coresets, epsilon-nets, approximating, cur},
location = {San Jose, California, USA},
series = {STOC '11}
}
@article{braverman-feldman-coresets,
author = {Vladimir Braverman and
Dan Feldman and
Harry Lang},
title = {New Frameworks for Offline and Streaming Coreset Constructions},
journal = {CoRR},
volume = {abs/1612.00889},
year = {2016},
url = {http://arxiv.org/abs/1612.00889},
eprinttype = {arXiv},
eprint = {1612.00889},
timestamp = {Mon, 13 Aug 2018 16:47:41 +0200},
biburl = {https://dblp.org/rec/journals/corr/BravermanFL16.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{big-data-tiny-data,
author = {Feldman, Dan and Schmidt, Melanie and Sohler, Christian},
title = {Turning Big Data Into Tiny Data: Constant-Size Coresets for $k$-Means, PCA, and Projective Clustering},
journal = {SIAM Journal on Computing},
volume = {49},
number = {3},
pages = {601-657},
year = {2020},
doi = {10.1137/18M1209854},
url = {https://doi.org/10.1137/18M1209854},
eprint = {https://doi.org/10.1137/18M1209854}
}
@inproceedings{langberg-schulman-sensitivities,
author = {Langberg, Michael and Schulman, Leonard J.},
title = {Universal $\epsilon$-Approximators for Integrals},
year = {2010},
isbn = {9780898716986},
booktitle = {Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms},
pages = {598-607},
numpages = {10},
location = {Austin, Texas},
series = {SODA '10}
}
@inproceedings{on-coresets,
author = {Alexander Munteanu and
Chris Schwiegelshohn and
Christian Sohler and
David P. Woodruff},
_editor = {Samy Bengio and
Hanna M. Wallach and
Hugo Larochelle and
Kristen Grauman and
Nicol{\`{o}} Cesa{-}Bianchi and
Roman Garnett},
title = {On Coresets for Logistic Regression},
_booktitle = {Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montr{\'{e}}al, Canada},
booktitle = {Advances in Neural Information Processing Systems 31, {(NeurIPS)}},
pages = {6562--6571},
year = {2018},
_url = {https://proceedings.neurips.cc/paper/2018/hash/63bfd6e8f26d1d3537f4c5038264ef36-Abstract.html},
_timestamp = {Thu, 21 Jan 2021 15:15:20 +0100},
_biburl = {https://dblp.org/rec/conf/nips/MunteanuSSW18.bib},
_bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{munteanu-coresets-introduction,
author = {Munteanu, Alexander
and Schwiegelshohn, Chris},
title = {Coresets-Methods and History: A Theoreticians Design Pattern for Approximation and Streaming Algorithms},
journal = {KI - K{\"u}nstliche Intelligenz},
year = {2018},
month = {Feb},
day = {01},
volume = {32},
number = {1},
pages = {37-53},
issn = {1610-1987},
doi = {10.1007/s13218-017-0519-3},
url = {https://doi.org/10.1007/s13218-017-0519-3}
}
@article{index,
title = {On randomized one-round communication complexity},
author = {Kremer, Ilan and Nisan, Noam and Ron, Dana},
journal = {Computational Complexity},
volume = {8},
number = {1},
pages = {21--49},
year = {1999},
publisher = {Springer}
}
@book{matrix-computations,
author = {Golub, Gene H. and van Loan, Charles F.},
edition = {Fourth},
isbn = {1421407949 9781421407944},
publisher = {JHU Press},
title = {Matrix Computations},
year = 2013
}
@article{online-row-sampling,
author = {Cohen, Michael B. and Musco, Cameron and Pachocki, Jakub},
title = {Online Row Sampling},
year = {2020},
pages = {1--25},
doi = {10.4086/toc.2020.v016a015},
publisher = {Theory of Computing},
journal = {Theory of Computing},
volume = {16},
number = {15},
url = {http://www.theoryofcomputing.org/articles/v016a015}
}
@book{computational-learning-theory,
author = {Michael J. Kearns and
Umesh V. Vazirani},
title = {An Introduction to Computational Learning Theory},
publisher = {{MIT} Press},
year = {1994},
url = {https://mitpress.mit.edu/books/introduction-computational-learning-theory},
isbn = {978-0-262-11193-5}
}
@article{tensor-factorization,
author = {Rachit Chhaya and
Jayesh Choudhari and
Anirban Dasgupta and
Supratim Shit},
title = {Streaming Coresets for Symmetric Tensor Factorization},
journal = {CoRR},
volume = {abs/2006.01225},
year = {2020},
url = {https://arxiv.org/abs/2006.01225},
archiveprefix = {arXiv},
eprint = {2006.01225}
}
@article{vc-dimension-partition,
title = {Results on learnability and the Vapnik-Chervonenkis dimension},
journal = {Information and Computation},
volume = {90},
number = {1},
pages = {33-49},
year = {1991},
issn = {0890-5401},
doi = {https://doi.org/10.1016/0890-5401(91)90058-A},
url = {https://www.sciencedirect.com/science/article/pii/089054019190058A},
author = {Nathan Linial and Yishay Mansour and Ronald L. Rivest}
}
@article{probit-computational,
title = {Computational aspects of probit model},
author = {E. Demidenko},
journal = {Mathematical Communications},
year = {2001},
volume = {6},
pages = {233-247}
}
@article{probit-existence,
title = {Existence and Uniqueness of the Maximum Likelihood Estimator for a Multivariate Probit Model},
author = {E. Lesaffre and H. Kaufmann},
journal = {Journal of the American Statistical Association},
year = {1992},
volume = {87},
pages = {805-811}
}
@book{regression-fahrmeir,
author = {Ludwig Fahrmeir and Thomas Kneib and Stefan Lang and Brian D. Marx},
title = {Regression},
subtitle = {Models, Methods and Applications},
publisher = {Springer-Verlag Berlin Heidelberg},
year = {2013}
}
@book{glm-nelder,
author = {P. McCullagh and John A. Nelder},
title = {Generalized Linear Models},
publisher = {Chapman and Hall/CRC},
year = {1989}
}
@book{glm-agresti,
author = {Alan Agresti},
title = {Foundations of Linear and Generalized Linear Models},
publisher = {Wiley},
year = {2015}
}
@article{wedderburn,
author = {Wedderburn, R. W. M.},
title = {{On the existence and uniqueness of the maximum likelihood estimates for certain generalized linear models}},
journal = {Biometrika},
volume = {63},
number = {1},
pages = {27-32},
year = {1976},
month = {04},
issn = {0006-3444}
}
@book{numerical-optimization,
author = {Jorge Nocedal and S. Wright},
title = {Numerical Optimization},
publisher = {Springer-Verlag New York},
year = {2006},
edition = {2}
}
@book{bayes-gelman,
author = {Andrew Gelman and John Carlin and Hal Stern and David Dunson and Aki Vehtari and Donald Rubin},
title = {Bayesian Data Analysis},
publisher = {Chapman and Hall/CRC},
year = {2013},
edition = {3}
}
@article{gibbs-probit-albert-chib,
author = {James H. Albert and Siddhartha Chib},
title = {Bayesian Analysis of Binary and Polychotomous Response Data},
journal = {Journal of the American Statistical Association},
volume = {88},
number = {422},
pages = {669-679},
year = {1993},
publisher = {Taylor & Francis}
}
@article{gibbs-sampler,
author = {Alan E. Gelfand and Adrian F. M. Smith},
journal = {Journal of the American Statistical Association},
number = {410},
pages = {398--409},
publisher = {[American Statistical Association, Taylor & Francis, Ltd.]},
title = {Sampling-Based Approaches to Calculating Marginal Densities},
volume = {85},
year = {1990}
}
@article{data-augmentation,
author = {Martin A. Tanner and Wing Hung Wong},
journal = {Journal of the American Statistical Association},
number = {398},
pages = {528--540},
publisher = {[American Statistical Association, Taylor & Francis, Ltd.]},
title = {The Calculation of Posterior Distributions by Data Augmentation},
volume = {82},
year = {1987}
}
@book{glivenko-cantelli,
place = {Cambridge},
series = {Cambridge Series in Statistical and Probabilistic Mathematics},
title = {Asymptotic Statistics},
publisher = {Cambridge University Press},
author = {Vaart, A. W. van der},
year = {1998},
collection = {Cambridge Series in Statistical and Probabilistic Mathematics}
}
@inproceedings{scalable-bayesian-logreg,
author = {Huggins, Jonathan H. and Campbell, Trevor and Broderick, Tamara},
title = {Coresets for Scalable Bayesian Logistic Regression},
year = {2016},
isbn = {9781510838819},
publisher = {Curran Associates Inc.},
address = {Red Hook, NY, USA},
booktitle = {Proceedings of the 30th International Conference on Neural Information Processing Systems},
pages = {4087–4095},
numpages = {9},
location = {Barcelona, Spain},
series = {NIPS'16}
}
@article{leverage-scores-drineas,
author = {Petros Drineas and Malik Magdon-Ismail and Michael W. Mahoney and David P. Woodruff},
title = {Fast Approximation of Matrix Coherence and Statistical Leverage},
journal = {Journal of Machine Learning Research},
year = {2012},
volume = {13},
number = {111},
pages = {3475-3506},
url = {http://jmlr.org/papers/v13/drineas12a.html}
}
@article{reservoir-sampler,
issn = {00063444},
url = {http://www.jstor.org/stable/2336002},
author = {M. T. Chao},
journal = {Biometrika},
number = {3},
pages = {653--656},
publisher = {[Oxford University Press, Biometrika Trust]},
title = {A General Purpose Unequal Probability Sampling Plan},
volume = {69},
year = {1982}
}
@article{woodruff-2017,
author = {Clarkson, Kenneth L. and Woodruff, David P.},
title = {Low-Rank Approximation and Regression in Input Sparsity Time},
year = {2017},
issue_date = {February 2017},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {63},
number = {6},
issn = {0004-5411},
url = {https://doi.org/10.1145/3019134},
doi = {10.1145/3019134},
journal = {J. ACM},
month = jan,
articleno = {54},
numpages = {45}
}
@article{johnson-lindenstrauss,
title = {Extensions of {L}ipschitz mappings into a {H}ilbert space},
author = {Johnson, William B and Lindenstrauss, Joram},
journal = {Contemporary mathematics},
volume = {{26}},
pages = {189-206},
number = {1},
year = {1984}
}
@article{sherman-morrison,
issn = {00034851},
url = {http://www.jstor.org/stable/2236561},
author = {Jack Sherman and Winifred J. Morrison},
journal = {The Annals of Mathematical Statistics},
number = {1},
pages = {124--127},
publisher = {Institute of Mathematical Statistics},
title = {Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix},
volume = {21},
year = {1950}
}
@article{coresets-strengthened,
author = {Tung Mai and
Anup B. Rao and
Cameron Musco},
title = {Coresets for Classification - Simplified and Strengthened},
journal = {CoRR},
volume = {abs/2106.04254},
year = {2021},
_url = {https://arxiv.org/abs/2106.04254},
_eprinttype = {arXiv},
_eprint = {2106.04254},
_timestamp = {Fri, 11 Jun 2021 11:04:16 +0200},
_biburl = {https://dblp.org/rec/journals/corr/abs-2106-04254.bib},
_bibsource = {dblp computer science bibliography, https://dblp.org}
}
@book{principal-components,
series = {Springer Series in Statistics},
title = {Principal Component Analysis},
publisher = {Springer-Verlag New York},
author = {I.T. Jolliffe},
year = {2002},
edition = {2}
}
@article{bayesian-regression,
author = {Leo N. Geppert and
Katja Ickstadt and
Alexander Munteanu and
Jens Quedenfeld and
Christian Sohler},
title = {Random projections for Bayesian regression},
journal = {Stat. Comput.},
volume = {27},
number = {1},
pages = {79--101},
year = {2017}
}
@inproceedings{mmd,
author = {Gretton, Arthur and Borgwardt, Karsten and Rasch, Malte and Sch\"{o}lkopf, Bernhard and Smola, Alex},
booktitle = {Advances in Neural Information Processing Systems},
editor = {B. Sch\"{o}lkopf and J. Platt and T. Hoffman},
pages = {},
publisher = {MIT Press},
title = {A Kernel Method for the Two-Sample-Problem},
volume = {19},
year = {2007}
}
@article{woodruff-2014,
author = {David P. Woodruff},
title = {Sketching as a Tool for Numerical Linear Algebra},
journal = {Found. Trends Theor. Comput. Sci.},
volume = {10},
number = {1-2},
pages = {1--157},
year = {2014},
_url = {https://doi.org/10.1561/0400000060},
_doi = {10.1561/0400000060},
_timestamp = {Thu, 20 Aug 2020 22:50:52 +0200},
_biburl = {https://dblp.org/rec/journals/fttcs/Woodruff14.bib},
_bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{probit-biostatistics,
author = {Varin, Cristiano and Czado, Claudia},
title = {A mixed autoregressive probit model for ordinal longitudinal data},
journal = {Biostatistics},
volume = {11},
number = {1},
pages = {127-138},
year = {2009},
month = {11},
_issn = {1465-4644},
_doi = {10.1093/biostatistics/kxp042},
_url = {https://doi.org/10.1093/biostatistics/kxp042},
_eprint = {https://academic.oup.com/biostatistics/article-pdf/11/1/127/17732342/kxp042.pdf}
}
@article{probit-econometrics,
title = {{B}ayesian estimation of a random effects heteroscedastic probit model},
author = {Gu, Yuanyuan and Fiebig, Denzil G and Cripps, Edward and Kohn, Robert},
journal = {The Econometrics Journal},
volume = {12},
number = {2},
pages = {324--339},
year = {2009},
publisher = {Oxford University Press Oxford, UK}
}
@article{KalkeR13,
author = { S. Kalke and W.-D. Richter },
title = {Simulation of the $p$-generalized {G}aussian distribution},
journal = {Journal of Statistical Computation and Simulation},
volume = {83},
number = {4},
pages = {641-667},
year = {2013},
publisher = {Taylor & Francis},
_doi = {10.1080/00949655.2011.631187},
_url = {https://doi.org/10.1080/00949655.2011.631187},
_eprint = {https://doi.org/10.1080/00949655.2011.631187}
}