-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathconvert.py
196 lines (182 loc) · 9.22 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import json
import torch
from gguf_reader import GGUFReader
from sentencepiece import sentencepiece_model_pb2
def convert_to_state_dict(checkpoint, save_dir):
if not os.path.exists(save_dir):
os.makedirs(save_dir)
state_dict = {}
result = GGUFReader(checkpoint)
architecture = result.fields['general.architecture']
architecture = str(bytes(architecture.parts[architecture.data[0]]), encoding = 'utf-8')
if architecture not in ["llama", "qwen2", "internlm2", "starcoder2", "qwen",
"stablelm", "orion", "minicpm", "gemma", "xverse", "command-r"]:
print(f"Unsupported architecture {architecture}")
return
# write tensor
for ts in result.tensors:
if hasattr(ts.data.dtype, 'names') and ts.data.dtype.names is not None:
for name in ts.data.dtype.names:
state_dict[ts.name + "_" + name] = torch.tensor(ts.data[name])
else:
state_dict[ts.name] = torch.tensor(ts.data)
if "weight" in ts.name:
state_dict[ts.name.replace("weight", "weight_type")] = torch.tensor(int(ts.tensor_type), dtype=torch.int)
torch.save(state_dict, os.path.join(save_dir, "pytorch_model.bin"))
# write vocab
# note we ignore added tokens for simplicity
vocab_type = result.fields["tokenizer.ggml.model"]
vocab_type = str(bytes(vocab_type.parts[vocab_type.data[0]]), encoding = 'utf-8')
if vocab_type == "gpt2":
# bpe vocab
merges = result.fields["tokenizer.ggml.merges"]
with open(os.path.join(save_dir, "merges.txt"), 'w') as f:
for idx in merges.data:
data = str(bytes(merges.parts[idx]), encoding = 'utf-8')
f.write(f"{data}\n")
tokens = result.fields['tokenizer.ggml.tokens']
types = result.fields['tokenizer.ggml.token_type']
vocab_size = len(tokens.data)
vocab = {}
special_vocab = {}
vocab_list = []
for i, idx in enumerate(tokens.data):
token = str(bytes(tokens.parts[idx]), encoding='utf-8')
token_type = int(types.parts[types.data[i]])
#if (token.startswith("[PAD") or token.startswith("<dummy")) and token_type == 4:
# break
vocab_list.append(token)
vocab[token] = i
if token_type == 3:
special_vocab[i] = {"content": token, "special": True}
json.dump(vocab, open(os.path.join(save_dir, "vocab.json"), 'w'),
ensure_ascii=False, indent=2)
else:
# sentencepiece
vocab = sentencepiece_model_pb2.ModelProto()
vocab_list = []
vocab_size = len(result.fields['tokenizer.ggml.token_type'].data)
# model_type = BPE
vocab.trainer_spec.model_type = 2
vocab.trainer_spec.vocab_size = vocab_size
if architecture not in ['orion']:
vocab.trainer_spec.byte_fallback = True
vocab.normalizer_spec.remove_extra_whitespaces = False
tokens = result.fields['tokenizer.ggml.tokens']
if 'tokenizer.ggml.scores' in result.fields:
scores = result.fields['tokenizer.ggml.scores']
else:
scores = None
types = result.fields['tokenizer.ggml.token_type']
special_vocab = {}
has_unk = False
for i in range(vocab_size):
new_token = vocab.SentencePiece()
new_token.piece = str(bytes(tokens.parts[tokens.data[i]]), encoding = 'utf-8')
if scores:
new_token.score = scores.parts[scores.data[i]]
# llama.cpp tokentype is the same with sentencepiece token type
new_token.type = int(types.parts[types.data[i]])
if new_token.type == 2:
has_unk = True
# fix for xverse, is it correct?
if new_token.piece == r"<b'\x00'>":
new_token.piece = rb'\x00'
new_token.type = 1
vocab_list.append(new_token.piece)
vocab.pieces.append(new_token)
if new_token.type == 3:
special_vocab[i] = {"content": new_token.piece, "special": True}
# hf_vocab doesn't correctly set unk token type, so we force one
if not has_unk:
vocab.pieces[0].type = 2
with open(os.path.join(save_dir, "tokenizer.model"), 'wb') as f:
f.write(vocab.SerializeToString())
tokenizer_conf = {}
if 'tokenizer.ggml.bos_token_id' in result.fields:
tokenizer_conf["bos_token"] = vocab_list[int(result.fields['tokenizer.ggml.bos_token_id'].parts[-1])]
if 'tokenizer.ggml.eos_token_id' in result.fields:
tokenizer_conf["eos_token"] = vocab_list[int(result.fields['tokenizer.ggml.eos_token_id'].parts[-1])]
if 'tokenizer.ggml.padding_token_id' in result.fields:
tokenizer_conf["pad_token"] = vocab_list[int(result.fields['tokenizer.ggml.padding_token_id'].parts[-1])]
if 'tokenizer.ggml.unknown_token_id' in result.fields:
tokenizer_conf["unk_token"] = vocab_list[int(result.fields['tokenizer.ggml.unknown_token_id'].parts[-1])]
if 'tokenizer.ggml.add_bos_token' in result.fields:
tokenizer_conf["add_bos_token"] = bool(result.fields['tokenizer.ggml.add_bos_token'].parts[-1])
if 'tokenizer.ggml.add_eos_token' in result.fields:
tokenizer_conf["add_eos_token"] = bool(result.fields['tokenizer.ggml.add_eos_token'].parts[-1])
if 'tokenizer.chat_template' in result.fields:
tokenizer_conf['chat_template'] = str(bytes(result.fields['tokenizer.chat_template'].parts[-1]), encoding = 'utf-8')
if special_vocab:
tokenizer_conf["added_tokens_decoder"] = special_vocab
json.dump(tokenizer_conf, open(os.path.join(save_dir, "tokenizer_config.json"), 'w'), indent=2)
# write config
context_length = int(result.fields[f'{architecture}.context_length'].parts[-1])
n_layer = int(result.fields[f'{architecture}.block_count'].parts[-1])
n_head = int(result.fields[f'{architecture}.attention.head_count'].parts[-1])
intermediate_size = int(result.fields[f'{architecture}.feed_forward_length'].parts[-1])
# qwen use ffn_size / 2 for ffn layers
if architecture == "qwen":
intermediate_size = intermediate_size / 2
dim = int(result.fields[f'{architecture}.embedding_length'].parts[-1])
if f'{architecture}.logit_scale' in result.fields:
logit_scale = float(result.fields[f'{architecture}.logit_scale'].parts[-1])
else:
logit_scale = 1.0
# https://github.com/ggerganov/llama.cpp/blob/9731134296af3a6839cd682e51d9c2109a871de5/llama.cpp#L12301
if architecture in ["qwen2", "gemma", "qwen", "stablelm", "starcoder2", "phi2"]:
rope_type = "neox"
elif architecture in ["llama", "internlm2", "baichuan", "startcoder", "orion", "minicpm",
"xverse", "command-r"]:
rope_type = "norm"
else:
rope_type = "none"
if architecture in ["starcoder2", "phi2", "gemma"]:
hidden_act = "gelu_tanh"
else:
hidden_act = "silu"
if architecture in ["starcoder2", "phi2"]:
mlp_gate = False
else:
mlp_gate = True
if architecture in ["starcoder2", "phi2", "stablelm", "orion", "command-r"]:
layernorm = True
else:
layernorm = False
model_config= {
"architecture": architecture,
"block_size": context_length,
"vocab_size": vocab_size,
"n_layer": n_layer,
"n_head": n_head,
"dim": dim,
"intermediate_size": intermediate_size,
"hidden_act": hidden_act,
"rope_type": rope_type,
"mlp_gate": mlp_gate,
"layernorm": layernorm,
"logit_scale": logit_scale
}
if f'{architecture}.attention.head_count_kv' in result.fields:
model_config['n_local_heads'] = int(result.fields[f'{architecture}.attention.head_count_kv'].parts[-1])
if f'{architecture}.attention.layer_norm_rms_epsilon' in result.fields:
model_config['norm_eps'] = float(result.fields[f'{architecture}.attention.layer_norm_rms_epsilon'].parts[-1])
if f'{architecture}.attention.key_length' in result.fields:
model_config['head_dim'] = int(result.fields[f'{architecture}.attention.key_length'].parts[-1])
if f'{architecture}.rope.freq_base' in result.fields:
model_config['rope_base'] = float(result.fields[f'{architecture}.rope.freq_base'].parts[-1])
if f'{architecture}.rope_dimension_count' in result.fields:
model_config['rope_dim'] = int(result.fields[f'{architecture}.rope_dimension_count'].parts[-1])
if f'{architecture}.expert_count' in result.fields:
model_config['num_experts'] = int(result.fields[f'{architecture}.expert_count'].parts[-1])
model_config['num_experts_per_tok'] = int(result.fields[f'{architecture}.expert_used_count'].parts[-1])
model_config['moe'] = (model_config['num_experts'] > 1)
json.dump(model_config, open(os.path.join(save_dir, "config.json"), 'w'), indent=2)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Convert GGUF checkpoints to torch')
parser.add_argument('--input', type=str, help='The path to GGUF file')
parser.add_argument('--output', type=str, help='The path to output directory')
args = parser.parse_args()
convert_to_state_dict(args.input, args.output)