Skip to content
/ VGMGC Public

TNNLS "Variational Graph Generator for Multi-View Graph Clustering".

Notifications You must be signed in to change notification settings

cjpcool/VGMGC

Repository files navigation

VGMGC: Variational Graph Generator for Multi-View Graph Clustering

This is the code of paper: Variational Graph Generator for Multi-View Graph Clustering.

We sincerely appreciate it if you cite this paper as

@ARTICLE{10833915,
  author={Chen, Jianpeng and Ling, Yawen and Xu, Jie and Ren, Yazhou and Huang, Shudong and Pu, Xiaorong and Hao, Zhifeng and Yu, Philip S. and He, Lifang},
  journal={IEEE Transactions on Neural Networks and Learning Systems}, 
  title={Variational Graph Generator for Multiview Graph Clustering}, 
  year={2025},
  volume={},
  number={},
  pages={1-14},
  doi={10.1109/TNNLS.2024.3524205}}

Requirements

  • Python >= 3.8
  • Pytorch >= 1.11.0
  • munkres >= 1.1.4
  • scikit-learn >= 1.0.1
  • scipy >= 1.8.0

Datasets

ACM and DBLP are included in ./data/. The other datasets are public available.

Dataset #Clusters #Nodes #Features Graphs
ACM 3 3025 1830 $\mathcal{G}^1$ co-paper
$\mathcal{G}^2$ co-subject
DBLP 4 4057 334 $\mathcal{G}^1$ co-author
$\mathcal{G}^2$ co-conference
$\mathcal{G}^3$ co-term
Amazon photos 8 7487 745
7487
$\mathcal{G}^1$ co-purchase
Amazon computers 10 13381 767
13381
$\mathcal{G}^1$ co-purchase

Test VGMGC

# Test VGMGC on ACM dataset
python vgmgc.py --dataset acm --train False --model_name vgmgc_acm.pkl --order 8 --lam_emd 1

# Test VGMGC on DBLP dataset
python vgmgc.py --dataset dblp --train False --model_name vgmgc_dblp.pkl --order 8 --lam_emd 5

# Test VGMGC on Cora dataset
python vgmgc.py --dataset cora --train False --model_name vgmgc_cora.pkl --order 10 --weight_soft 1. --min_belief 0.2 --max_belief 0.99 --lam_emd 0.2 --kl_step 5 --lam_elbo_kl 1 --threshold 0.5 --temperature 1 --add_graph True 

# Test VGMGC on Citeseer dataset
python vgmgc.py --dataset citeseer --train False --model_name vgmgc_citeseer.pkl --order 8 --weight_soft 1. --min_belief 0.2 --max_belief 0.99 --lam_emd 1. --kl_step 5 --lam_elbo_kl 1 --threshold 0.5 --temperature 1 --add_graph True

# Test VGMGC on 3Sources dataset
python vgmgc.py --dataset 3sources --train False --model_name vgmgc_3sources_acc0.9467.pkl --order 1 --weight_soft 1. --min_belief 0.2 --max_belief 0.99 --lam_emd 10. --kl_step 5 --lam_elbo_kl 1 --threshold 0.5 --temperature 1

# Test VGMGC on bbc sport  dataset
python vgmgc.py --dataset bbcsport_2view --train False --model_name vgmgc_bbcsport_2view_acc0.9835.pkl --order 2 --weight_soft 1. --min_belief 0.2 --max_belief 0.99 --lam_emd 100. --kl_step 5 --lam_elbo_kl 1 --threshold 0.5 --temperature 1

Train VGMGC

# Train VGMGC on ACM dataset
python vgmgc.py --dataset acm --train true --model_name vgmgc_acm1.pkl --order 8 --weight_soft 0.9 --min_belief 0.7 --max_belief 0.99 --lam_emd 1 --kl_step 5 --lam_elbo_kl 1 --threshold 0.8 --temperature 5

# Train VGMGC on DBLP dataset
python vgmgc.py --dataset dblp --train true --model_name vgmgc_dblp1.pkl --order 8 --weight_soft 0.1 --min_belief 0.2 --max_belief 0.99 --lam_emd 5 --kl_step 10 --lam_elbo_kl 1 --threshold 0.8 --temperature 1


python vgmgc.py --dataset cora --train true --model_name vgmgc_cora1.pkl --order 10 --weight_soft 1. --min_belief 0.2 --max_belief 0.99 --lam_emd 0.2 --kl_step 5 --lam_elbo_kl 1 --threshold 0.5 --temperature 1  --add_graph True --update_interval 2


python vgmgc.py --dataset citeseer --train true --model_name vgmgc_citeseer1.pkl --order 8 --weight_soft 1. --min_belief 0.2 --max_belief 0.99 --lam_emd 1. --kl_step 5 --lam_elbo_kl 1 --threshold 0.5 --temperature 1  --add_graph True --update_interval 2


python vgmgc.py --dataset 3sources --train true  --order 1 --weight_soft 1. --min_belief 0.2 --max_belief 0.99 --lam_emd 10. --kl_step 5 --lam_elbo_kl 1 --threshold 0.5 --temperature 1 --latent_dim 512 --hidden_dim 512 --update_interval 2


python vgmgc.py --dataset bbcsport_2view --train true  --order 2 --weight_soft 1. --min_belief 0.2 --max_belief 0.99 --lam_emd 100. --kl_step 5 --lam_elbo_kl 1 --threshold 0.5 --temperature 1 --latent_dim 512 --hidden_dim 512 --update_interval 2

Parameters: More parameters and descriptions can be found in the script and paper.

Results of VGMGC

NMI% ARI% ACC% F1%
ACM 77.3 83.7 94.3 94.3
DBLP 78.3 83.7 93.2 92.7
Amazon photos 66.8 58.4 78.5 76.9
Amazon computers 53.5 47.5 62.2 50.2
NMI% ARI% ACC% F1%
Cora 55.6 51.7 73.5 71.6
Citeseer 45.2 46.4 70.1 65.4
BBC sport 94.6 95.1 98.3 98.6
3sources 86.5 88.1 94.7 93.5

About

TNNLS "Variational Graph Generator for Multi-View Graph Clustering".

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages