Skip to content

feat: Add Anthropic Support #395

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Apr 27, 2025
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -106,3 +106,4 @@ bytes = "1.10.1"
rand = "0.9.0"
indoc = "2.0.6"
owo-colors = "4.2.0"
json5 = "0.4.1"
25 changes: 24 additions & 1 deletion docs/docs/ai/llm.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -97,4 +97,27 @@ cocoindex.LlmSpec(
</TabItem>
</Tabs>

You can find the full list of models supported by Gemini [here](https://ai.google.dev/gemini-api/docs/models).
You can find the full list of models supported by Gemini [here](https://ai.google.dev/gemini-api/docs/models).

### Anthropic

To use the Anthropic LLM API, you need to set the environment variable `ANTHROPIC_API_KEY`.
You can generate the API key from [Anthropic API](https://console.anthropic.com/settings/keys).

A spec for Anthropic looks like this:

<Tabs>
<TabItem value="python" label="Python" default>

```python
cocoindex.LlmSpec(
api_type=cocoindex.LlmApiType.ANTHROPIC,
model="claude-3-5-sonnet-latest",
)
```

</TabItem>
</Tabs>

You can find the full list of models supported by Anthropic [here](https://docs.anthropic.com/en/docs/about-claude/models/all-models).

4 changes: 4 additions & 0 deletions examples/manuals_llm_extraction/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,6 +98,10 @@ def manual_extraction_flow(flow_builder: cocoindex.FlowBuilder, data_scope: coco
# Replace by this spec below, to use Gemini API model
# llm_spec=cocoindex.LlmSpec(
# api_type=cocoindex.LlmApiType.GEMINI, model="gemini-2.0-flash"),

# Replace by this spec below, to use Anthropic API model
# llm_spec=cocoindex.LlmSpec(
# api_type=cocoindex.LlmApiType.ANTHROPIC, model="claude-3-5-sonnet-latest"),
output_type=ModuleInfo,
instruction="Please extract Python module information from the manual."))
doc["module_summary"] = doc["module_info"].transform(summarize_module)
Expand Down
1 change: 1 addition & 0 deletions python/cocoindex/llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ class LlmApiType(Enum):
OPENAI = "OpenAi"
OLLAMA = "Ollama"
GEMINI = "Gemini"
ANTHROPIC = "Anthropic"

@dataclass
class LlmSpec:
Expand Down
132 changes: 132 additions & 0 deletions src/llm/anthropic.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
use async_trait::async_trait;
use crate::llm::{LlmGenerationClient, LlmSpec, LlmGenerateRequest, LlmGenerateResponse, ToJsonSchemaOptions, OutputFormat};
use anyhow::{Result, bail, Context};
use serde_json::Value;
use json5;

use crate::api_bail;
use urlencoding::encode;

pub struct Client {
model: String,
api_key: String,
client: reqwest::Client,
}

impl Client {
pub async fn new(spec: LlmSpec) -> Result<Self> {
let api_key = match std::env::var("ANTHROPIC_API_KEY") {
Ok(val) => val,
Err(_) => api_bail!("ANTHROPIC_API_KEY environment variable must be set"),
};
Ok(Self {
model: spec.model,
api_key,
client: reqwest::Client::new(),
})
}
}

#[async_trait]
impl LlmGenerationClient for Client {
async fn generate<'req>(
&self,
request: LlmGenerateRequest<'req>,
) -> Result<LlmGenerateResponse> {
let messages = vec![serde_json::json!({
"role": "user",
"content": request.user_prompt
})];

let mut payload = serde_json::json!({
"model": self.model,
"messages": messages,
"max_tokens": 4096
});

// Add system prompt as top-level field if present (required)
if let Some(system) = request.system_prompt {
payload["system"] = serde_json::json!(system);
}

let OutputFormat::JsonSchema { schema, .. } = request.output_format.as_ref().expect("Anthropic client expects OutputFormat::JsonSchema for all requests");
let schema_json = serde_json::to_value(schema)?;
payload["tools"] = serde_json::json!([
{ "type": "custom", "name": "extraction", "input_schema": schema_json }
]);

let url = "https://api.anthropic.com/v1/messages";

let encoded_api_key = encode(&self.api_key);

let resp = self.client
.post(url)
.header("x-api-key", encoded_api_key.as_ref())
.header("anthropic-version", "2023-06-01")
.json(&payload)
.send()
.await
.context("HTTP error")?;
let resp_json: Value = resp.json().await.context("Invalid JSON")?;
if let Some(error) = resp_json.get("error") {
bail!("Anthropic API error: {:?}", error);
}

// Debug print full response
// println!("Anthropic API full response: {resp_json:?}");

let resp_content = &resp_json["content"];
let tool_name = "extraction";
let mut extracted_json: Option<Value> = None;
if let Some(array) = resp_content.as_array() {
for item in array {
if item.get("type") == Some(&Value::String("tool_use".to_string()))
&& item.get("name") == Some(&Value::String(tool_name.to_string()))
{
if let Some(input) = item.get("input") {
extracted_json = Some(input.clone());
break;
}
}
}
}
let text = if let Some(json) = extracted_json {
// Try strict JSON serialization first
serde_json::to_string(&json)?
} else {
// Fallback: try text if no tool output found
match &resp_json["content"][0]["text"] {
Value::String(s) => {
// Try strict JSON parsing first
match serde_json::from_str::<serde_json::Value>(s) {
Ok(_) => s.clone(),
Err(e) => {
// Try permissive json5 parsing as fallback
match json5::from_str::<serde_json::Value>(s) {
Ok(_) => {
println!("[Anthropic] Used permissive JSON5 parser for output");
s.clone()
},
Err(e2) => return Err(anyhow::anyhow!(format!("No structured tool output or text found in response, and permissive JSON5 parsing also failed: {e}; {e2}")))
}
}
}
},
_ => return Err(anyhow::anyhow!("No structured tool output or text found in response")),
}
};

Ok(LlmGenerateResponse {
text,
})
}

fn json_schema_options(&self) -> ToJsonSchemaOptions {
ToJsonSchemaOptions {
fields_always_required: false,
supports_format: false,
extract_descriptions: false,
top_level_must_be_object: true,
}
}
}
5 changes: 5 additions & 0 deletions src/llm/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@ pub enum LlmApiType {
Ollama,
OpenAi,
Gemini,
Anthropic,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
Expand Down Expand Up @@ -54,6 +55,7 @@ pub trait LlmGenerationClient: Send + Sync {
mod ollama;
mod openai;
mod gemini;
mod anthropic;

pub async fn new_llm_generation_client(spec: LlmSpec) -> Result<Box<dyn LlmGenerationClient>> {
let client = match spec.api_type {
Expand All @@ -66,6 +68,9 @@ pub async fn new_llm_generation_client(spec: LlmSpec) -> Result<Box<dyn LlmGener
LlmApiType::Gemini => {
Box::new(gemini::Client::new(spec).await?) as Box<dyn LlmGenerationClient>
}
LlmApiType::Anthropic => {
Box::new(anthropic::Client::new(spec).await?) as Box<dyn LlmGenerationClient>
}
};
Ok(client)
}