forked from blender/blender-addons
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
1997 lines (1695 loc) · 76.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# SPDX-License-Identifier: GPL-2.0-or-later
import bpy
import time
import copy
from mathutils import (
Euler,
Matrix,
Vector,
)
from math import pi, sin, degrees, radians, atan2, copysign, cos, acos
from math import floor
from random import random, uniform, seed, choice, getstate, setstate, randint
from collections import deque, OrderedDict
tau = 2 * pi
# Initialise the split error and axis vectors
splitError = 0.0
zAxis = Vector((0, 0, 1))
yAxis = Vector((0, 1, 0))
xAxis = Vector((1, 0, 0))
# This class will contain a part of the tree which needs to be extended and the required tree parameters
class stemSpline:
def __init__(self, spline, curvature, curvatureV, attractUp, segments, maxSegs,
segLength, childStems, stemRadStart, stemRadEnd, splineNum, ofst, pquat):
self.spline = spline
self.p = spline.bezier_points[-1]
self.curv = curvature
self.curvV = curvatureV
self.vertAtt = attractUp
self.seg = segments
self.segMax = maxSegs
self.segL = segLength
self.children = childStems
self.radS = stemRadStart
self.radE = stemRadEnd
self.splN = splineNum
self.offsetLen = ofst
self.patentQuat = pquat
self.curvSignx = 1
self.curvSigny = 1
# This method determines the quaternion of the end of the spline
def quat(self):
if len(self.spline.bezier_points) == 1:
return ((self.spline.bezier_points[-1].handle_right -
self.spline.bezier_points[-1].co).normalized()).to_track_quat('Z', 'Y')
else:
return ((self.spline.bezier_points[-1].co -
self.spline.bezier_points[-2].co).normalized()).to_track_quat('Z', 'Y')
# Determine the declination
def dec(self):
tempVec = zAxis.copy()
tempVec.rotate(self.quat())
return zAxis.angle(tempVec)
# Update the end of the spline and increment the segment count
def updateEnd(self):
self.p = self.spline.bezier_points[-1]
self.seg += 1
# This class contains the data for a point where a new branch will sprout
class childPoint:
def __init__(self, coords, quat, radiusPar, offset, sOfst, lengthPar, parBone):
self.co = coords
self.quat = quat
self.radiusPar = radiusPar
self.offset = offset
self.stemOffset = sOfst
self.lengthPar = lengthPar
self.parBone = parBone
# This function calculates the shape ratio as defined in the paper
def shapeRatio(shape, ratio, pruneWidthPeak=0.0, prunePowerHigh=0.0, prunePowerLow=0.0, custom=None):
if shape == 0:
return 0.05 + 0.95 * ratio # 0.2 + 0.8 * ratio
elif shape == 1:
return 0.2 + 0.8 * sin(pi * ratio)
elif shape == 2:
return 0.2 + 0.8 * sin(0.5 * pi * ratio)
elif shape == 3:
return 1.0
elif shape == 4:
return 0.5 + 0.5 * ratio
elif shape == 5:
if ratio <= 0.7:
return 0.05 + 0.95 * ratio / 0.7
else:
return 0.05 + 0.95 * (1.0 - ratio) / 0.3
elif shape == 6:
return 1.0 - 0.8 * ratio
elif shape == 7:
if ratio <= 0.7:
return 0.5 + 0.5 * ratio / 0.7
else:
return 0.5 + 0.5 * (1.0 - ratio) / 0.3
elif shape == 8:
r = 1 - ratio
if r == 1:
v = custom[3]
elif r >= custom[2]:
pos = (r - custom[2]) / (1 - custom[2])
# if (custom[0] >= custom[1] <= custom[3]) or (custom[0] <= custom[1] >= custom[3]):
pos = pos * pos
v = (pos * (custom[3] - custom[1])) + custom[1]
else:
pos = r / custom[2]
# if (custom[0] >= custom[1] <= custom[3]) or (custom[0] <= custom[1] >= custom[3]):
pos = 1 - (1 - pos) * (1 - pos)
v = (pos * (custom[1] - custom[0])) + custom[0]
return v
elif shape == 9:
if (ratio < (1 - pruneWidthPeak)) and (ratio > 0.0):
return ((ratio / (1 - pruneWidthPeak))**prunePowerHigh)
elif (ratio >= (1 - pruneWidthPeak)) and (ratio < 1.0):
return (((1 - ratio) / pruneWidthPeak)**prunePowerLow)
else:
return 0.0
elif shape == 10:
return 0.5 + 0.5 * (1 - ratio)
# This function determines the actual number of splits at a given point using the global error
def splits(n):
global splitError
nEff = round(n + splitError, 0)
splitError -= (nEff - n)
return int(nEff)
def splits2(n):
r = random()
if r < n:
return 1
else:
return 0
def splits3(n):
ni = int(n)
nf = n - int(n)
r = random()
if r < nf:
return ni + 1
else:
return ni + 0
# Determine the declination from a given quaternion
def declination(quat):
tempVec = zAxis.copy()
tempVec.rotate(quat)
tempVec.normalize()
return degrees(acos(tempVec.z))
# Determines the angle of upward rotation of a segment due to attractUp
def curveUp(attractUp, quat, curveRes):
tempVec = yAxis.copy()
tempVec.rotate(quat)
tempVec.normalize()
dec = radians(declination(quat))
curveUpAng = attractUp * dec * abs(tempVec.z) / curveRes
if (-dec + curveUpAng) < -pi:
curveUpAng = -pi + dec
if (dec - curveUpAng) < 0:
curveUpAng = dec
return curveUpAng
# Evaluate a bezier curve for the parameter 0<=t<=1 along its length
def evalBez(p1, h1, h2, p2, t):
return ((1 - t)**3) * p1 + (3 * t * (1 - t)**2) * h1 + (3 * (t**2) * (1 - t)) * h2 + (t**3) * p2
# Evaluate the unit tangent on a bezier curve for t
def evalBezTan(p1, h1, h2, p2, t):
return (
(-3 * (1 - t)**2) * p1 + (-6 * t * (1 - t) + 3 * (1 - t)**2) * h1 +
(-3 * (t**2) + 6 * t * (1 - t)) * h2 + (3 * t**2) * p2
).normalized()
# Determine the range of t values along a splines length where child stems are formed
def findChildPoints(stemList, numChild):
numPoints = sum([len(n.spline.bezier_points) for n in stemList])
numSplines = len(stemList)
numSegs = numPoints - numSplines
numPerSeg = numChild / numSegs
numMain = round(numPerSeg * stemList[0].segMax, 0)
return [(a + 1) / (numMain) for a in range(int(numMain))]
def findChildPoints2(stemList, numChild):
return [(a + 1) / (numChild) for a in range(int(numChild))]
# Find the coordinates, quaternion and radius for each t on the stem
def interpStem1(stem, tVals, lPar, parRad):
points = stem.spline.bezier_points
numPoints = len(points)
checkVal = (stem.segMax - (numPoints - 1)) / stem.segMax
# Loop through all the parametric values to be determined
tempList = deque()
for t in tVals:
if t == 1.0:
index = numPoints - 2
coord = points[-1].co
quat = (points[-1].handle_right - points[-1].co).to_track_quat('Z', 'Y')
radius = points[-1].radius
tempList.append(
childPoint(coord, quat, (parRad, radius), t, lPar, 'bone' +
(str(stem.splN).rjust(3, '0')) + '.' + (str(index).rjust(3, '0')))
)
elif (t >= checkVal) and (t < 1.0):
scaledT = (t - checkVal) / ((1 - checkVal) + .0001)
length = (numPoints - 1) * scaledT
index = int(length)
tTemp = length - index
coord = evalBez(
points[index].co, points[index].handle_right,
points[index + 1].handle_left, points[index + 1].co, tTemp
)
quat = (
evalBezTan(
points[index].co, points[index].handle_right,
points[index + 1].handle_left, points[index + 1].co, tTemp)
).to_track_quat('Z', 'Y')
# Not sure if this is the parent radius at the child point or parent start radius
radius = (1 - tTemp) * points[index].radius + tTemp * points[index + 1].radius
tempList.append(
childPoint(
coord, quat, (parRad, radius), t, lPar, 'bone' +
(str(stem.splN).rjust(3, '0')) + '.' + (str(index).rjust(3, '0')))
)
return tempList
def interpStem(stem, tVals, lPar, parRad, maxOffset, baseSize):
points = stem.spline.bezier_points
numSegs = len(points) - 1
stemLen = stem.segL * numSegs
checkBottom = stem.offsetLen / maxOffset
checkTop = checkBottom + (stemLen / maxOffset)
# Loop through all the parametric values to be determined
tempList = deque()
for t in tVals:
if (t >= checkBottom) and (t <= checkTop) and (t < 1.0):
scaledT = (t - checkBottom) / (checkTop - checkBottom)
ofst = ((t - baseSize) / (checkTop - baseSize)) * (1 - baseSize) + baseSize
length = numSegs * scaledT
index = int(length)
tTemp = length - index
coord = evalBez(
points[index].co, points[index].handle_right,
points[index + 1].handle_left, points[index + 1].co, tTemp
)
quat = (
evalBezTan(
points[index].co, points[index].handle_right,
points[index + 1].handle_left, points[index + 1].co, tTemp
)
).to_track_quat('Z', 'Y')
# Not sure if this is the parent radius at the child point or parent start radius
radius = (1 - tTemp) * points[index].radius + tTemp * points[index + 1].radius
tempList.append(
childPoint(
coord, quat, (parRad, radius), t, ofst, lPar,
'bone' + (str(stem.splN).rjust(3, '0')) + '.' + (str(index).rjust(3, '0')))
)
# add stem at tip
index = numSegs - 1
coord = points[-1].co
quat = (points[-1].handle_right - points[-1].co).to_track_quat('Z', 'Y')
radius = points[-1].radius
tempList.append(
childPoint(
coord, quat, (parRad, radius), 1, 1, lPar,
'bone' + (str(stem.splN).rjust(3, '0')) + '.' + (str(index).rjust(3, '0'))
)
)
return tempList
# round down bone number
def roundBone(bone, step):
bone_i = bone[:-3]
bone_n = int(bone[-3:])
bone_n = int(bone_n / step) * step
return bone_i + str(bone_n).rjust(3, '0')
# Convert a list of degrees to radians
def toRad(list):
return [radians(a) for a in list]
def anglemean(a1, a2, fac):
x1 = sin(a1)
y1 = cos(a1)
x2 = sin(a2)
y2 = cos(a2)
x = x1 + (x2 - x1) * fac
y = y1 + (y2 - y1) * fac
return atan2(x, y)
# This is the function which extends (or grows) a given stem.
def growSpline(n, stem, numSplit, splitAng, splitAngV, splineList,
hType, splineToBone, closeTip, kp, splitHeight, outAtt, stemsegL,
lenVar, taperCrown, boneStep, rotate, rotateV):
# curv at base
sCurv = stem.curv
if (n == 0) and (kp <= splitHeight):
sCurv = 0.0
# curveangle = sCurv + (uniform(-stem.curvV, stem.curvV) * kp)
# curveVar = uniform(-stem.curvV, stem.curvV) * kp
curveangle = sCurv + (uniform(0, stem.curvV) * kp * stem.curvSignx)
curveVar = uniform(0, stem.curvV) * kp * stem.curvSigny
stem.curvSignx *= -1
stem.curvSigny *= -1
curveVarMat = Matrix.Rotation(curveVar, 3, 'Y')
# First find the current direction of the stem
dir = stem.quat()
if n == 0:
adir = zAxis.copy()
adir.rotate(dir)
ry = atan2(adir[0], adir[2])
adir.rotate(Euler((0, -ry, 0)))
rx = atan2(adir[1], adir[2])
dir = Euler((-rx, ry, 0), 'XYZ')
# length taperCrown
if n == 0:
dec = declination(dir) / 180
dec = dec ** 2
tf = 1 - (dec * taperCrown * 30)
tf = max(.1, tf)
else:
tf = 1.0
# outward attraction
if (n > 0) and (kp > 0) and (outAtt > 0):
p = stem.p.co.copy()
d = atan2(p[0], -p[1]) + tau
edir = dir.to_euler('XYZ', Euler((0, 0, d), 'XYZ'))
d = anglemean(edir[2], d, (kp * outAtt))
dirv = Euler((edir[0], edir[1], d), 'XYZ')
dir = dirv.to_quaternion()
"""
# parent weight
parWeight = kp * degrees(stem.curvV) * pi
parWeight = parWeight * kp
parWeight = kp
if (n > 1) and (parWeight != 0):
d1 = zAxis.copy()
d2 = zAxis.copy()
d1.rotate(dir)
d2.rotate(stem.patentQuat)
x = d1[0] + ((d2[0] - d1[0]) * parWeight)
y = d1[1] + ((d2[1] - d1[1]) * parWeight)
z = d1[2] + ((d2[2] - d1[2]) * parWeight)
d3 = Vector((x, y, z))
dir = d3.to_track_quat('Z', 'Y')
"""
# If the stem splits, we need to add new splines etc
if numSplit > 0:
# Get the curve data
cuData = stem.spline.id_data.name
cu = bpy.data.curves[cuData]
# calc split angles
angle = choice([-1, 1]) * (splitAng + uniform(-splitAngV, splitAngV))
if n > 0:
# make branches flatter
angle *= max(1 - declination(dir) / 90, 0) * .67 + .33
spreadangle = choice([-1, 1]) * (splitAng + uniform(-splitAngV, splitAngV))
# branchRotMat = Matrix.Rotation(radians(uniform(0, 360)), 3, 'Z')
if not hasattr(stem, 'rLast'):
stem.rLast = radians(uniform(0, 360))
br = rotate[0] + uniform(-rotateV[0], rotateV[0])
branchRot = stem.rLast + br
branchRotMat = Matrix.Rotation(branchRot, 3, 'Z')
stem.rLast = branchRot
# Now for each split add the new spline and adjust the growth direction
for i in range(numSplit):
# find split scale
lenV = uniform(1 - lenVar, 1 + lenVar)
bScale = min(lenV * tf, 1)
newSpline = cu.splines.new('BEZIER')
newPoint = newSpline.bezier_points[-1]
(newPoint.co, newPoint.handle_left_type, newPoint.handle_right_type) = (stem.p.co, 'VECTOR', 'VECTOR')
newPoint.radius = (
stem.radS * (1 - stem.seg / stem.segMax) + stem.radE * (stem.seg / stem.segMax)
) * bScale
# Here we make the new "sprouting" stems diverge from the current direction
divRotMat = Matrix.Rotation(angle + curveangle, 3, 'X')
dirVec = zAxis.copy()
dirVec.rotate(divRotMat)
# horizontal curvature variation
dirVec.rotate(curveVarMat)
if n == 0: # Special case for trunk splits
dirVec.rotate(branchRotMat)
ang = pi - ((tau) / (numSplit + 1)) * (i + 1)
dirVec.rotate(Matrix.Rotation(ang, 3, 'Z'))
# Spread the stem out in a random fashion
spreadMat = Matrix.Rotation(spreadangle, 3, 'Y')
if n != 0: # Special case for trunk splits
dirVec.rotate(spreadMat)
dirVec.rotate(dir)
# Introduce upward curvature
upRotAxis = xAxis.copy()
upRotAxis.rotate(dirVec.to_track_quat('Z', 'Y'))
curveUpAng = curveUp(stem.vertAtt, dirVec.to_track_quat('Z', 'Y'), stem.segMax)
upRotMat = Matrix.Rotation(-curveUpAng, 3, upRotAxis)
dirVec.rotate(upRotMat)
# Make the growth vec the length of a stem segment
dirVec.normalize()
# split length variation
stemL = stemsegL * lenV
dirVec *= stemL * tf
ofst = stem.offsetLen + (stem.segL * (len(stem.spline.bezier_points) - 1))
# dirVec *= stem.segL
# Get the end point position
end_co = stem.p.co.copy()
# Add the new point and adjust its coords, handles and radius
newSpline.bezier_points.add(1)
newPoint = newSpline.bezier_points[-1]
(newPoint.co, newPoint.handle_left_type, newPoint.handle_right_type) = (end_co + dirVec, hType, hType)
newPoint.radius = (
stem.radS * (1 - (stem.seg + 1) / stem.segMax) +
stem.radE * ((stem.seg + 1) / stem.segMax)
) * bScale
if (stem.seg == stem.segMax - 1) and closeTip:
newPoint.radius = 0.0
# If this isn't the last point on a stem, then we need to add it
# to the list of stems to continue growing
# print(stem.seg != stem.segMax, stem.seg, stem.segMax)
# if stem.seg != stem.segMax: # if probs not necessary
nstem = stemSpline(
newSpline, stem.curv, stem.curvV, stem.vertAtt, stem.seg + 1,
stem.segMax, stemL, stem.children,
stem.radS * bScale, stem.radE * bScale, len(cu.splines) - 1, ofst, stem.quat()
)
nstem.splitlast = 1 # numSplit # keep track of numSplit for next stem
nstem.rLast = branchRot + pi
splineList.append(nstem)
bone = 'bone' + (str(stem.splN)).rjust(3, '0') + '.' + \
(str(len(stem.spline.bezier_points) - 2)).rjust(3, '0')
bone = roundBone(bone, boneStep[n])
splineToBone.append((bone, False, True, len(stem.spline.bezier_points) - 2))
# The original spline also needs to keep growing so adjust its direction too
divRotMat = Matrix.Rotation(-angle + curveangle, 3, 'X')
dirVec = zAxis.copy()
dirVec.rotate(divRotMat)
# horizontal curvature variation
dirVec.rotate(curveVarMat)
if n == 0: # Special case for trunk splits
dirVec.rotate(branchRotMat)
# spread
spreadMat = Matrix.Rotation(-spreadangle, 3, 'Y')
if n != 0: # Special case for trunk splits
dirVec.rotate(spreadMat)
dirVec.rotate(dir)
stem.splitlast = 1 # numSplit #keep track of numSplit for next stem
else:
# If there are no splits then generate the growth direction without accounting for spreading of stems
dirVec = zAxis.copy()
divRotMat = Matrix.Rotation(curveangle, 3, 'X')
dirVec.rotate(divRotMat)
# horizontal curvature variation
dirVec.rotate(curveVarMat)
dirVec.rotate(dir)
stem.splitlast = 0 # numSplit #keep track of numSplit for next stem
# Introduce upward curvature
upRotAxis = xAxis.copy()
upRotAxis.rotate(dirVec.to_track_quat('Z', 'Y'))
curveUpAng = curveUp(stem.vertAtt, dirVec.to_track_quat('Z', 'Y'), stem.segMax)
upRotMat = Matrix.Rotation(-curveUpAng, 3, upRotAxis)
dirVec.rotate(upRotMat)
dirVec.normalize()
dirVec *= stem.segL * tf
# Get the end point position
end_co = stem.p.co.copy()
stem.spline.bezier_points.add(1)
newPoint = stem.spline.bezier_points[-1]
(newPoint.co, newPoint.handle_left_type, newPoint.handle_right_type) = (end_co + dirVec, hType, hType)
newPoint.radius = stem.radS * (1 - (stem.seg + 1) / stem.segMax) + \
stem.radE * ((stem.seg + 1) / stem.segMax)
if (stem.seg == stem.segMax - 1) and closeTip:
newPoint.radius = 0.0
# There are some cases where a point cannot have handles as VECTOR straight away, set these now
if len(stem.spline.bezier_points) == 2:
tempPoint = stem.spline.bezier_points[0]
(tempPoint.handle_left_type, tempPoint.handle_right_type) = ('VECTOR', 'VECTOR')
# Update the last point in the spline to be the newly added one
stem.updateEnd()
# return splineList
def genLeafMesh(leafScale, leafScaleX, leafScaleT, leafScaleV, loc, quat,
offset, index, downAngle, downAngleV, rotate, rotateV, oldRot,
bend, leaves, leafShape, leafangle, horzLeaves):
if leafShape == 'hex':
verts = [
Vector((0, 0, 0)), Vector((0.5, 0, 1 / 3)), Vector((0.5, 0, 2 / 3)),
Vector((0, 0, 1)), Vector((-0.5, 0, 2 / 3)), Vector((-0.5, 0, 1 / 3))
]
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 0], [0, 3]]
faces = [[0, 1, 2, 3], [0, 3, 4, 5]]
elif leafShape == 'rect':
# verts = [Vector((1, 0, 0)), Vector((1, 0, 1)), Vector((-1, 0, 1)), Vector((-1, 0, 0))]
verts = [Vector((.5, 0, 0)), Vector((.5, 0, 1)), Vector((-.5, 0, 1)), Vector((-.5, 0, 0))]
edges = [[0, 1], [1, 2], [2, 3], [3, 0]]
faces = [[0, 1, 2, 3]]
elif leafShape == 'dFace':
verts = [Vector((.5, .5, 0)), Vector((.5, -.5, 0)), Vector((-.5, -.5, 0)), Vector((-.5, .5, 0))]
edges = [[0, 1], [1, 2], [2, 3], [3, 0]]
faces = [[0, 3, 2, 1]]
elif leafShape == 'dVert':
verts = [Vector((0, 0, 1))]
edges = []
faces = []
vertsList = []
facesList = []
normal = Vector((0, 0, 1))
if leaves < 0:
rotMat = Matrix.Rotation(oldRot, 3, 'Y')
else:
rotMat = Matrix.Rotation(oldRot, 3, 'Z')
# If the -ve flag for rotate is used we need to find which side of the stem
# the last child point was and then grow in the opposite direction
if rotate < 0.0:
oldRot = -copysign(rotate + uniform(-rotateV, rotateV), oldRot)
else:
# If the special -ve flag for leaves is used we need a different rotation of the leaf geometry
if leaves == -1:
# oldRot = 0
rotMat = Matrix.Rotation(0, 3, 'Y')
elif leaves < -1:
oldRot += rotate / (-leaves - 1)
else:
oldRot += rotate + uniform(-rotateV, rotateV)
"""
if leaves < 0:
rotMat = Matrix.Rotation(oldRot, 3, 'Y')
else:
rotMat = Matrix.Rotation(oldRot, 3, 'Z')
"""
if leaves >= 0:
# downRotMat = Matrix.Rotation(downAngle+uniform(-downAngleV, downAngleV), 3, 'X')
if downAngleV > 0.0:
downV = -downAngleV * offset
else:
downV = uniform(-downAngleV, downAngleV)
downRotMat = Matrix.Rotation(downAngle + downV, 3, 'X')
# leaf scale variation
if (leaves < -1) and (rotate != 0):
f = 1 - abs((oldRot - (rotate / (-leaves - 1))) / (rotate / 2))
else:
f = offset
if leafScaleT < 0:
leafScale = leafScale * (1 - (1 - f) * -leafScaleT)
else:
leafScale = leafScale * (1 - f * leafScaleT)
leafScale = leafScale * uniform(1 - leafScaleV, 1 + leafScaleV)
if leafShape == 'dFace':
leafScale = leafScale * .1
# If the bending of the leaves is used we need to rotate them differently
if (bend != 0.0) and (leaves >= 0):
normal = yAxis.copy()
orientationVec = zAxis.copy()
normal.rotate(quat)
orientationVec.rotate(quat)
thetaPos = atan2(loc.y, loc.x)
thetaBend = thetaPos - atan2(normal.y, normal.x)
rotateZ = Matrix.Rotation(bend * thetaBend, 3, 'Z')
normal.rotate(rotateZ)
orientationVec.rotate(rotateZ)
phiBend = atan2((normal.xy).length, normal.z)
orientation = atan2(orientationVec.y, orientationVec.x)
rotateZOrien = Matrix.Rotation(orientation, 3, 'X')
rotateX = Matrix.Rotation(bend * phiBend, 3, 'Z')
rotateZOrien2 = Matrix.Rotation(-orientation, 3, 'X')
# For each of the verts we now rotate and scale them, then append them to the list to be added to the mesh
for v in verts:
v.z *= leafScale
v.y *= leafScale
v.x *= leafScaleX * leafScale
v.rotate(Euler((0, 0, radians(180))))
# leafangle
v.rotate(Matrix.Rotation(radians(-leafangle), 3, 'X'))
if rotate < 0:
v.rotate(Euler((0, 0, radians(90))))
if oldRot < 0:
v.rotate(Euler((0, 0, radians(180))))
if (leaves > 0) and (rotate > 0) and horzLeaves:
nRotMat = Matrix.Rotation(-oldRot + rotate, 3, 'Z')
v.rotate(nRotMat)
if leaves > 0:
v.rotate(downRotMat)
v.rotate(rotMat)
v.rotate(quat)
if (bend != 0.0) and (leaves > 0):
# Correct the rotation
v.rotate(rotateZ)
v.rotate(rotateZOrien)
v.rotate(rotateX)
v.rotate(rotateZOrien2)
if leafShape == 'dVert':
normal = verts[0]
normal.normalize()
v = loc
vertsList.append([v.x, v.y, v.z])
else:
for v in verts:
v += loc
vertsList.append([v.x, v.y, v.z])
for f in faces:
facesList.append([f[0] + index, f[1] + index, f[2] + index, f[3] + index])
return vertsList, facesList, normal, oldRot
def create_armature(armAnim, leafP, cu, frameRate, leafMesh, leafObj, leafVertSize, leaves,
levelCount, splineToBone, treeOb, wind, gust, gustF, af1, af2, af3,
leafAnim, loopFrames, previewArm, armLevels, makeMesh, boneStep):
arm = bpy.data.armatures.new('tree')
armOb = bpy.data.objects.new('treeArm', arm)
bpy.context.scene.collection.objects.link(armOb)
# Create a new action to store all animation
newAction = bpy.data.actions.new(name='windAction')
armOb.animation_data_create()
armOb.animation_data.action = newAction
arm.display_type = 'STICK'
# Add the armature modifier to the curve
armMod = treeOb.modifiers.new('windSway', 'ARMATURE')
if previewArm:
armMod.show_viewport = False
arm.display_type = 'WIRE'
treeOb.hide_viewport = True
armMod.use_apply_on_spline = True
armMod.object = armOb
armMod.use_bone_envelopes = True
armMod.use_vertex_groups = False # curves don't have vertex groups (yet)
# If there are leaves then they need a modifier
if leaves:
armMod = leafObj.modifiers.new('windSway', 'ARMATURE')
armMod.object = armOb
armMod.use_bone_envelopes = False
armMod.use_vertex_groups = True
# Make sure all objects are deselected (may not be required?)
for ob in bpy.context.view_layer.objects:
ob.select_set(state=False)
fps = bpy.context.scene.render.fps
animSpeed = (24 / fps) * frameRate
# Set the armature as active and go to edit mode to add bones
bpy.context.view_layer.objects.active = armOb
bpy.ops.object.mode_set(mode='EDIT')
# For all the splines in the curve we need to add bones at each bezier point
for i, parBone in enumerate(splineToBone):
if (i < levelCount[armLevels]) or (armLevels == -1) or (not makeMesh):
s = cu.splines[i]
b = None
# Get some data about the spline like length and number of points
numPoints = len(s.bezier_points) - 1
# find branching level
level = 0
for l, c in enumerate(levelCount):
if i < c:
level = l
break
level = min(level, 3)
step = boneStep[level]
# Calculate things for animation
if armAnim:
splineL = numPoints * ((s.bezier_points[0].co - s.bezier_points[1].co).length)
# Set the random phase difference of the animation
bxOffset = uniform(0, tau)
byOffset = uniform(0, tau)
# Set the phase multiplier for the spline
# bMult_r = (s.bezier_points[0].radius / max(splineL, 1e-6)) * (1 / 15) * (1 / frameRate)
# This shouldn't have to be in degrees but it looks much better in animation
# bMult = degrees(bMult_r)
bMult = (1 / max(splineL ** .5, 1e-6)) * (1 / 4)
# print((1 / bMult) * tau) #print wavelength in frames
windFreq1 = bMult * animSpeed
windFreq2 = 0.7 * bMult * animSpeed
if loopFrames != 0:
bMult_l = 1 / (loopFrames / tau)
fRatio = max(1, round(windFreq1 / bMult_l))
fgRatio = max(1, round(windFreq2 / bMult_l))
windFreq1 = fRatio * bMult_l
windFreq2 = fgRatio * bMult_l
# For all the points in the curve (less the last) add a bone and name it by the spline it will affect
nx = 0
for n in range(0, numPoints, step):
oldBone = b
boneName = 'bone' + (str(i)).rjust(3, '0') + '.' + (str(n)).rjust(3, '0')
b = arm.edit_bones.new(boneName)
b.head = s.bezier_points[n].co
nx += step
nx = min(nx, numPoints)
b.tail = s.bezier_points[nx].co
b.head_radius = s.bezier_points[n].radius
b.tail_radius = s.bezier_points[n + 1].radius
b.envelope_distance = 0.001
"""
# If there are leaves then we need a new vertex group so they will attach to the bone
if not leafAnim:
if (len(levelCount) > 1) and (i >= levelCount[-2]) and leafObj:
leafObj.vertex_groups.new(name=boneName)
elif (len(levelCount) == 1) and leafObj:
leafObj.vertex_groups.new(name=boneName)
"""
# If this is first point of the spline then it must be parented to the level above it
if n == 0:
if parBone:
b.parent = arm.edit_bones[parBone]
# Otherwise, we need to attach it to the previous bone in the spline
else:
b.parent = oldBone
b.use_connect = True
# If there isn't a previous bone then it shouldn't be attached
if not oldBone:
b.use_connect = False
# Add the animation to the armature if required
if armAnim:
# Define all the required parameters of the wind sway by the dimension of the spline
# a0 = 4 * splineL * (1 - n / (numPoints + 1)) / max(s.bezier_points[n].radius, 1e-6)
a0 = 2 * (splineL / numPoints) * (1 - n / (numPoints + 1)) / max(s.bezier_points[n].radius, 1e-6)
a0 = a0 * min(step, numPoints)
# a0 = (splineL / numPoints) / max(s.bezier_points[n].radius, 1e-6)
a1 = (wind / 50) * a0
a2 = a1 * .65 # (windGust / 50) * a0 + a1 / 2
p = s.bezier_points[nx].co - s.bezier_points[n].co
p.normalize()
ag = (wind * gust / 50) * a0
a3 = -p[0] * ag
a4 = p[2] * ag
a1 = radians(a1)
a2 = radians(a2)
a3 = radians(a3)
a4 = radians(a4)
# wind bending
if loopFrames == 0:
swayFreq = gustF * (tau / fps) * frameRate # animSpeed # .075 # 0.02
else:
swayFreq = 1 / (loopFrames / tau)
# Prevent tree base from rotating
if (boneName == "bone000.000") or (boneName == "bone000.001"):
a1 = 0
a2 = 0
a3 = 0
a4 = 0
# Add new fcurves for each sway as well as the modifiers
swayX = armOb.animation_data.action.fcurves.new(
'pose.bones["' + boneName + '"].rotation_euler', index=0
)
swayY = armOb.animation_data.action.fcurves.new(
'pose.bones["' + boneName + '"].rotation_euler', index=2
)
swayXMod1 = swayX.modifiers.new(type='FNGENERATOR')
swayXMod2 = swayX.modifiers.new(type='FNGENERATOR')
swayYMod1 = swayY.modifiers.new(type='FNGENERATOR')
swayYMod2 = swayY.modifiers.new(type='FNGENERATOR')
# Set the parameters for each modifier
swayXMod1.amplitude = a1
swayXMod1.phase_offset = bxOffset
swayXMod1.phase_multiplier = windFreq1
swayXMod2.amplitude = a2
swayXMod2.phase_offset = 0.7 * bxOffset
swayXMod2.phase_multiplier = windFreq2
swayXMod2.use_additive = True
swayYMod1.amplitude = a1
swayYMod1.phase_offset = byOffset
swayYMod1.phase_multiplier = windFreq1
swayYMod2.amplitude = a2
swayYMod2.phase_offset = 0.7 * byOffset
swayYMod2.phase_multiplier = windFreq2
swayYMod2.use_additive = True
# wind bending
swayYMod3 = swayY.modifiers.new(type='FNGENERATOR')
swayYMod3.amplitude = a3
swayYMod3.phase_multiplier = swayFreq
swayYMod3.value_offset = .6 * a3
swayYMod3.use_additive = True
swayXMod3 = swayX.modifiers.new(type='FNGENERATOR')
swayXMod3.amplitude = a4
swayXMod3.phase_multiplier = swayFreq
swayXMod3.value_offset = .6 * a4
swayXMod3.use_additive = True
if leaves:
bonelist = [b.name for b in arm.edit_bones]
vertexGroups = OrderedDict()
for i, cp in enumerate(leafP):
# find leafs parent bone
leafParent = roundBone(cp.parBone, boneStep[armLevels])
idx = int(leafParent[4:-4])
while leafParent not in bonelist:
# find parent bone of parent bone
leafParent = splineToBone[idx]
idx = int(leafParent[4:-4])
if leafAnim:
bname = "leaf" + str(i)
b = arm.edit_bones.new(bname)
b.head = cp.co
b.tail = cp.co + Vector((0, 0, .02))
b.envelope_distance = 0.0
b.parent = arm.edit_bones[leafParent]
vertexGroups[bname] = [
v.index for v in
leafMesh.vertices[leafVertSize * i:(leafVertSize * i + leafVertSize)]
]
if armAnim:
# Define all the required parameters of the wind sway by the dimension of the spline
a1 = wind * .25
a1 *= af1
bMult = (1 / animSpeed) * 6
bMult *= 1 / max(af2, .001)
ofstRand = af3
bxOffset = uniform(-ofstRand, ofstRand)
byOffset = uniform(-ofstRand, ofstRand)
# Add new fcurves for each sway as well as the modifiers
swayX = armOb.animation_data.action.fcurves.new(
'pose.bones["' + bname + '"].rotation_euler', index=0
)
swayY = armOb.animation_data.action.fcurves.new(
'pose.bones["' + bname + '"].rotation_euler', index=2
)
# Add keyframe so noise works
swayX.keyframe_points.add(1)
swayY.keyframe_points.add(1)
swayX.keyframe_points[0].co = (0, 0)
swayY.keyframe_points[0].co = (0, 0)
# Add noise modifiers
swayXMod = swayX.modifiers.new(type='NOISE')
swayYMod = swayY.modifiers.new(type='NOISE')
if loopFrames != 0:
swayXMod.use_restricted_range = True
swayXMod.frame_end = loopFrames
swayXMod.blend_in = 4
swayXMod.blend_out = 4
swayYMod.use_restricted_range = True
swayYMod.frame_end = loopFrames
swayYMod.blend_in = 4
swayYMod.blend_out = 4
swayXMod.scale = bMult
swayXMod.strength = a1
swayXMod.offset = bxOffset
swayYMod.scale = bMult
swayYMod.strength = a1
swayYMod.offset = byOffset
else:
if leafParent not in vertexGroups:
vertexGroups[leafParent] = []
vertexGroups[leafParent].extend(
[v.index for v in
leafMesh.vertices[leafVertSize * i:(leafVertSize * i + leafVertSize)]]
)
for group in vertexGroups:
leafObj.vertex_groups.new(name=group)
leafObj.vertex_groups[group].add(vertexGroups[group], 1.0, 'ADD')
# Now we need the rotation mode to be 'XYZ' to ensure correct rotation
bpy.ops.object.mode_set(mode='OBJECT')
for p in armOb.pose.bones:
p.rotation_mode = 'XYZ'
treeOb.parent = armOb
def kickstart_trunk(addstem, levels, leaves, branches, cu, curve, curveRes,
curveV, attractUp, length, lengthV, ratio, ratioPower,
resU, scale0, scaleV0, scaleVal, taper, minRadius, rootFlare):
newSpline = cu.splines.new('BEZIER')
cu.resolution_u = resU
newPoint = newSpline.bezier_points[-1]
newPoint.co = Vector((0, 0, 0))
newPoint.handle_right = Vector((0, 0, 1))