-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluation.py
70 lines (58 loc) · 2.54 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import os
from pathlib import Path
import pandas as pd
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
from lib import utils
results = {key: [] for key in ['model_name',
'hour_on',
'day_on',
'month_on',
'wx_history',
'wx_forecast',
'pv_forecast',
'win_length',
'step',
'time_horizon',
'mean_MAE',
'std_MAE',
'mean_MAPE',
'std_MAPE',
'mean_MSE',
'std_MSE',
'mean_RMSE',
'std_RMSE',
'mean_SMAPE',
'std_SMAPE',
'mean_WMAPE',
'std_WMAPE',
'mean_MAAPE',
'std_MAAPE',
'mean_MDA',
'std_MDA',
'mean_MASE',
'std_MASE',
]}
def main():
i = 1
for root, dirs, files in os.walk("./saved_models/MATNet", topdown=False):
for name in dirs:
if "version" in name:
experiment_path = os.path.join(root, name)
experiment_name = list(Path(experiment_path).parts)[-3]
experiment_setup = utils.filename2setup(experiment_name)
flattened_dict = dict(utils.flattenize_dict(experiment_setup))
# flattened_dict["model_name"] = flattened_dict["model_name"].split("_")[-1]
flattened_dict["model_name"] = list(Path(experiment_path).parts)[-4]
# Get results
exp_result = utils.get_performances(experiment_path, experiment_setup,
filename='last.ckpt', best=False)
flattened_dict = {**flattened_dict, **exp_result}
for key in flattened_dict:
results[key].append(flattened_dict[key])
i = i + 1
print(i)
break
df = pd.DataFrame(results)
df.to_excel("results_matnet.xlsx")
if __name__ == "__main__":
main()