-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathoptimizer.py
41 lines (34 loc) · 1.15 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
"""
Source: http://nlp.seas.harvard.edu/2018/04/03/attention.html.
"""
import torch
class NoamOpt:
"""Optim wrapper that implements rate."""
def __init__(self, model_size, factor, warmup, optimizer):
self.optimizer = optimizer
self._step = 0
self.warmup = warmup
self.factor = factor
self.model_size = model_size
self._rate = 0
def step(self):
"""Update parameters and rate."""
self._step += 1
rate = self.rate()
for p in self.optimizer.param_groups:
p['lr'] = rate
self._rate = rate
self.optimizer.step()
def zero_grad(self):
"""Delegate zero grad to underlying optimizer."""
self.optimizer.zero_grad()
def rate(self, step = None):
"""Implement `lrate` above."""
if step is None:
step = self._step
return self.factor * \
(self.model_size ** (-0.5) *
min(step ** (-0.5), step * self.warmup ** (-1.5)))
def get_std_transformer_opt(args, model):
return NoamOpt(args.d_model, 2, 4000,
torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))