-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
executable file
·222 lines (191 loc) · 8.28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import time
import torch
from torch import nn
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
from model import PAD_INDEX
from data import Corpus
from model import make_model
from optimizer import get_std_transformer_opt
from util import Timer, write_losses
LOSSES = dict(train_loss=[], train_acc=[], val_acc=[], test_acc=[])
def arc_accuracy(S_arc, heads, eps=1e-10):
"""Accuracy of the arc predictions based on gready head prediction."""
_, pred = S_arc.max(dim=-2)
mask = (heads != PAD_INDEX).float()
accuracy = torch.sum((pred == heads).float() * mask, dim=-1) / (torch.sum(mask, dim=-1) + eps)
return torch.mean(accuracy).data[0]
def lab_accuracy(S_lab, heads, labels, eps=1e-10):
"""Accuracy of label predictions on the gold arcs."""
_, pred = S_lab.max(dim=1)
pred = torch.gather(pred, 1, heads.unsqueeze(1)).squeeze(1)
mask = (heads != PAD_INDEX).float()
accuracy = torch.sum((pred == labels).float() * mask, dim=-1) / (torch.sum(mask, dim=-1) + eps)
return torch.mean(accuracy).data[0]
def evaluate(args, model, corpus):
"""Evaluate the arc and label accuracy of the model on the development corpus."""
# Turn on evaluation mode to disable dropout.
model.eval()
dev_batches = corpus.dev.batches(256, length_ordered=True)
arc_acc, lab_acc = 0, 0
for k, batch in enumerate(dev_batches, 1):
words, tags, heads, labels = batch
if args.cuda:
words, tags, heads, labels = words.cuda(), tags.cuda(), heads.cuda(), labels.cuda()
S_arc, S_lab = model(words=words, tags=tags)
arc_acc += arc_accuracy(S_arc, heads)
lab_acc += lab_accuracy(S_lab, heads, labels)
arc_acc /= k
lab_acc /= k
return arc_acc, lab_acc
class SimpleLossCompute:
"""A simple loss compute and train function on one device."""
def __init__(self, model, optimizer):
self.model = model
self.optimizer = optimizer
def __call__(self, words, tags, heads, labels):
# Forward pass.
S_arc, S_lab = self.model(words=words, tags=tags)
# Compute loss.
arc_loss = self.model.arc_loss(S_arc, heads)
lab_loss = self.model.lab_loss(S_lab, heads, labels)
loss = arc_loss + lab_loss
# Update parameters.
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
loss_dict = dict(loss=loss.data[0], arc_loss=arc_loss.data[0], lab_loss=lab_loss.data[0])
return S_arc, S_lab, loss_dict
class MultiGPULossCompute:
"""A multi-gpu loss compute and train function.
Only difference with SimpleLossCompute is we need to access loss
through model.module.
"""
def __init__(self, model, optimizer, devices, output_device=None):
self.model = model
self.optimizer = optimizer
self.devices = devices
self.output_device = output_device if output_device is not None else devices[0]
def __call__(self, words, tags, heads, labels):
# Forward pass.
S_arc, S_lab = self.model(words=words, tags=tags)
# Compute loss.
arc_loss = self.model.module.arc_loss(S_arc, heads)
lab_loss = self.model.module.lab_loss(S_lab, heads, labels)
loss = arc_loss + lab_loss
# Update parameters.
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
loss_dict = dict(loss=loss.data[0], arc_loss=arc_loss.data[0], lab_loss=lab_loss.data[0])
return S_arc, S_lab, loss_dict
def run_epoch(args, model, corpus, train_step):
model.train()
nbatches = len(corpus.train.words) // args.batch_size
start_time = time.time()
# Get a new set of shuffled training batches.
train_batches = corpus.train.batches(args.batch_size, length_ordered=args.disable_length_ordered)
ntokens = 0
for step, batch in enumerate(train_batches, 1):
words, tags, heads, labels = batch
if args.cuda:
words, tags, heads, labels = words.cuda(), tags.cuda(), heads.cuda(), labels.cuda()
S_arc, S_lab, loss_dict = train_step(words, tags, heads, labels)
ntokens += words.size(0) * words.size(1)
LOSSES['train_loss'].append(loss_dict['loss'])
if step % args.print_every == 0:
arc_train_acc = arc_accuracy(S_arc, heads)
lab_train_acc = lab_accuracy(S_lab, heads, labels)
LOSSES['train_acc'].append([arc_train_acc, lab_train_acc])
print(
'| Step {:5d}/{:5d} ({:.0f}%)| Avg loss {:3.4f} | Arc acc {:4.2f}% '
'| Label acc {:4.2f}% | {:4.0f} tokens/sec |'.format(
step,
nbatches,
100*step/nbatches,
np.mean(LOSSES['train_loss'][-args.print_every:]),
100*arc_train_acc,
100*lab_train_acc,
ntokens/(time.time() - start_time)),
)
def train(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
args.cuda = torch.cuda.is_available()
print('Using cuda: {}'.format(args.cuda))
# Initialize the data, model, and optimizer.
corpus = Corpus(data_path=args.data, vocab_path=args.vocab, char=args.use_chars)
model = make_model(
args,
word_vocab_size=len(corpus.dictionary.w2i),
tag_vocab_size=len(corpus.dictionary.t2i),
num_labels=len(corpus.dictionary.l2i)
)
print('Embedding parameters: {:,}'.format(model.embedding.num_parameters))
print('Encoder parameters: {:,}'.format(model.encoder.num_parameters))
print('Total model parameters: {:,}'.format(model.num_parameters))
if args.cuda:
model.cuda()
if args.encoder == 'transformer':
optimizer = get_std_transformer_opt(args, model)
else:
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
if args.cuda:
device_count = torch.cuda.device_count()
if args.multi_gpu:
devices = list(range(device_count))
model = nn.DataParallel(model, device_ids=devices)
train_step = MultiGPULossCompute(model, optimizer, devices)
print('Training on {} GPUs: {}.'.format(device_count, devices))
else:
train_step = SimpleLossCompute(model, optimizer)
print('Training on 1 device out of {} availlable.'.format(device_count))
else:
train_step = SimpleLossCompute(model, optimizer)
timer = Timer()
best_val_acc = 0.
best_epoch = 0
print('Start of training..')
try:
for epoch in range(1, args.epochs+1):
run_epoch(args, model, corpus, train_step)
# Evaluate model on validation set.
# TODO: replace this with a UAS and LAS eval instead of this proxy
arc_val_acc, lab_val_acc = evaluate(args, model, corpus)
LOSSES['val_acc'].append([arc_val_acc, lab_val_acc])
# Save model if it is the best so far.
if arc_val_acc > best_val_acc:
torch.save(model, args.checkpoints)
best_val_acc = arc_val_acc
best_epoch = epoch
write_losses(LOSSES['train_loss'], LOSSES['train_acc'], LOSSES['val_acc'], args.logdir)
# End epoch with some useful info in the terminal.
print('-' * 89)
print(
'| End of epoch {:3d}/{} | Time {:5.2f}s | Valid accuracy {:3.2f}% |'
' Best accuracy {:3.2f}% (epoch {:3d}) |'.format(
epoch,
args.epochs,
timer.elapsed(),
100*arc_val_acc,
100*best_val_acc,
best_epoch)
)
print('-' * 89)
except KeyboardInterrupt:
print()
print('-' * 89)
print('Exiting from training early')
write_losses(LOSSES['train_loss'], LOSSES['train_acc'], LOSSES['val_acc'], args.logdir)
arc_val_acc, lab_val_acc = evaluate(args, model, corpus)
if arc_val_acc > best_val_acc:
torch.save(model, args.checkpoints)
best_val_acc = arc_val_acc
best_epoch = epoch
print('=' * 89)
print('| End of training | Best validation accuracy {:3.2f} (epoch {}) |'.format(
100*best_val_acc, best_epoch))
print('=' * 89)