Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

tests #1

Merged
merged 1 commit into from
Jan 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions agents/follower.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,6 @@
DEFAULT_GUI = True
DEFAULT_RECORD_VIDEO = False
DEFAULT_OUTPUT_FOLDER = 'results'

DEFAULT_OBS = ObservationType('kin') # 'kin' or 'rgb'
DEFAULT_ACT = ActionType('vel') # 'rpm' or 'pid' or 'vel' or 'one_d_rpm' or 'one_d_pid'
DEFAULT_AGENTS = 1
Expand All @@ -51,10 +50,11 @@ def run(output_folder=DEFAULT_OUTPUT_FOLDER, gui=DEFAULT_GUI, plot=True, record_
train_env = make_vec_env(
FollowerAviary,
env_kwargs=dict(obs=DEFAULT_OBS, act=DEFAULT_ACT),
n_envs=20,
n_envs=1,
seed=0
)
eval_env = FollowerAviary(obs=DEFAULT_OBS, act=DEFAULT_ACT)
initial_xyzs = np.array([[0., 0., 0.1125]])
eval_env = FollowerAviary(obs=DEFAULT_OBS, act=DEFAULT_ACT, initial_xyzs=initial_xyzs)

#### Check the environment's spaces ########################
print('[INFO] Action space:', train_env.action_space)
Expand Down Expand Up @@ -85,7 +85,7 @@ def run(output_folder=DEFAULT_OUTPUT_FOLDER, gui=DEFAULT_GUI, plot=True, record_
render=True
)
model.learn(
total_timesteps=int(5e5) if local else int(1e2), # shorter training in GitHub Actions pytest
total_timesteps=int(1e4) if local else int(1e2), # shorter training in GitHub Actions pytest
callback=eval_callback,
log_interval=100
)
Expand Down Expand Up @@ -176,5 +176,5 @@ def run(output_folder=DEFAULT_OUTPUT_FOLDER, gui=DEFAULT_GUI, plot=True, record_
parser.add_argument('--record_video', default=DEFAULT_RECORD_VIDEO, type=str2bool, help='Whether to record a video (default: False)', metavar='')
parser.add_argument('--output_folder', default=DEFAULT_OUTPUT_FOLDER, type=str, help='Folder where to save logs (default: "results")', metavar='')
ARGS = parser.parse_args()

os.makedirs(DEFAULT_OUTPUT_FOLDER, exist_ok=True)
run(**vars(ARGS))
35 changes: 26 additions & 9 deletions aviaries/FollowerAviary.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@

from gym_pybullet_drones.control.DSLPIDControl import DSLPIDControl
from trajectories import TrajectoryFactory
from trajectories import Waypoint

class FollowerAviary(BaseRLAviary):
"""Single agent RL problem: hover at position."""
Expand All @@ -15,7 +16,7 @@ class FollowerAviary(BaseRLAviary):

def __init__(self,
drone_model: DroneModel=DroneModel.CF2X,
initial_xyzs=None,
initial_xyzs: np.ndarray = np.array([[0., 0., 0.1125]]),
initial_rpys=None,
physics: Physics=Physics.PYB,
pyb_freq: int = 240,
Expand All @@ -33,7 +34,7 @@ def __init__(self,
----------
drone_model : DroneModel, optional
The desired drone type (detailed in an .urdf file in folder `assets`).
initial_xyzs: ndarray | None, optional
initial_xyzs: ndarray
(NUM_DRONES, 3)-shaped array containing the initial XYZ position of the drones.
initial_rpys: ndarray | None, optional
(NUM_DRONES, 3)-shaped array containing the initial orientations of the drones (in radians).
Expand All @@ -53,11 +54,21 @@ def __init__(self,
The type of action space (1 or 3D; RPMS, thurst and torques, or waypoint with PID control)

"""
self.TARGET_POS = np.array([0,0,1])

self.EPISODE_LEN_SEC = 16
self.NUM_DRONES = 1
self.WAYPOINT_BUFFER_SIZE = 3 # how many steps into future to interpolate
self.trajectory = TrajectoryFactory.get_linear_square_traj_discretized()

self.INIT_XYZS = initial_xyzs
starting_waypoint = self.INIT_XYZS[0].copy()
starting_waypoint[2] = starting_waypoint[2] + 0.1
starting_waypoint = Waypoint(
coordinate=starting_waypoint,
timestamp=0.0
)
self.trajectory = TrajectoryFactory.get_simple_smooth_trajectory(starting_waypoint, n_points_discretization_level=4)
self.TARGET_POS = self.trajectory[len(self.trajectory) - 1]

self.n_waypoints = len(self.trajectory)
self.current_waypoint_idx = 0

Expand Down Expand Up @@ -92,10 +103,15 @@ def _computeReward(self):
The reward.

"""
alpha = .5
beta = 0.0025

state = self._getDroneStateVector(0)
waypoint = self.waypoint_buffer[self.current_waypoint_idx]
ret = max(0, 2 - np.linalg.norm(waypoint-state[0:3])**4)
return ret
reached_pos_reward = 1 if np.linalg.norm(waypoint-state[0:3]) < 0.001 else 0
distance_reward = max(0, 2 - np.linalg.norm(waypoint-state[0:3])**4)
distance_reward = alpha * distance_reward
return alpha * reached_pos_reward + beta * distance_reward

################################################################################

Expand All @@ -109,7 +125,7 @@ def _computeTerminated(self):

"""
state = self._getDroneStateVector(0)
if np.linalg.norm(self.TARGET_POS-state[0:3]) < .0001:
if np.linalg.norm(self.TARGET_POS.coordinate-state[0:3]) < .0001:
return True
else:
return False
Expand Down Expand Up @@ -197,9 +213,10 @@ def _observationSpace(self):
def update_waypoints(self):
drone_position = self._getDroneStateVector(0)[0:3]
current_waypoint = self.waypoint_buffer[self.current_waypoint_idx]
if np.linalg.norm(drone_position - current_waypoint) < .1:
if np.linalg.norm(drone_position - current_waypoint) < .001:
# replace reached waypoint with the waypoint that follows after all waypoints in the buffer
next_waypoint = self.trajectory.get_waypoint((self.current_waypoint_idx + len(self.waypoint_buffer)) % len(self.trajectory))
next_waypoint_idx = int(self.current_waypoint_idx + len(self.waypoint_buffer)) % len(self.trajectory)
next_waypoint = self.trajectory[next_waypoint_idx].coordinate
self.waypoint_buffer[self.current_waypoint_idx] = next_waypoint
# set next waypoint
self.current_waypoint_idx = (self.current_waypoint_idx + 1) % self.WAYPOINT_BUFFER_SIZE
Expand Down
5 changes: 1 addition & 4 deletions gym_pybullet_drones/utils/Logger.py
Original file line number Diff line number Diff line change
Expand Up @@ -373,7 +373,4 @@ def plot(self, pwm=False):
wspace=0.15,
hspace=0.0
)
if self.COLAB:
plt.savefig(os.path.join('results', 'output_figure.png'))
else:
plt.show()
plt.savefig(os.path.join('results', 'output_figure.pdf'))
30 changes: 25 additions & 5 deletions runnables/pid_follow_trajectory.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@
import time
import argparse
import numpy as np
from trajectories import TrajectoryFactory
from trajectories import TrajectoryFactory, Waypoint

from gym_pybullet_drones.utils.enums import DroneModel, Physics
from gym_pybullet_drones.envs.CtrlAviary import CtrlAviary
Expand Down Expand Up @@ -60,11 +60,19 @@ def run(
colab=DEFAULT_COLAB
):
#### Initialize the simulation #############################
INIT_XYZS = np.array([[0., 0., 0.5]])
INIT_XYZS = np.array([[0., 0., 0.1125]])
INIT_RPYS = np.array([[0., 0., 0.]])

#### Initialize a polynomial trajectory ####################
target_trajectory = TrajectoryFactory.get_pol_discretized_trajectory()
starting_waypoint = INIT_XYZS[0].copy()
starting_waypoint[2] = starting_waypoint[2] + 0.1
starting_waypoint = Waypoint(
coordinate=starting_waypoint,
timestamp=0.0
)
target_trajectory = TrajectoryFactory.get_simple_smooth_trajectory(starting_waypoint)
for wp in range(len(target_trajectory)):
print(target_trajectory[wp].coordinate)
n_waypoints = len(target_trajectory)
cur_waypoint_idx = 0

Expand Down Expand Up @@ -98,6 +106,11 @@ def run(
#### Run the simulation
action = np.zeros((num_drones,4))
START = time.time()

final_coordinate = target_trajectory[len(target_trajectory) - 1].coordinate

done = False
# print(final_coordinate)
for i in range(int(1e5)):

#### Step the simulation ###################################
Expand All @@ -115,12 +128,19 @@ def run(

#### Go to the next way point and loop #####################
position = obs[0][0:3]

distance2final = np.linalg.norm(final_coordinate - position)
distance = np.linalg.norm(target_position - position)
velocity = np.linalg.norm(obs[0][10:13])
if distance < 0.1:

if distance2final < 0.1 and cur_waypoint_idx >= len(target_trajectory) - 5:
done = True

if distance < 0.1 and not done:
cur_waypoint_idx = (cur_waypoint_idx + 1) % n_waypoints


# if distance2final < 0.1:
# break
##### Log the simulation ####################################

#### Printout
Expand Down
52 changes: 33 additions & 19 deletions trajectories/trajectory_factory.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,41 +10,43 @@
class WAYPOINT_BOOTH:
T_WAYPOINTS_POLY = [
Waypoint(
coordinate=np.asarray([0, 0, 0]),
timestamp=0
coordinate=np.asarray([0, 0, 0.25]),
timestamp=1
),
Waypoint(
coordinate=np.asarray([0, 1, 0.25]),
coordinate=np.asarray([0, 0, 0.25]),
timestamp=2
),
Waypoint(
coordinate=np.asarray([1, 1, 0.5]),
timestamp=4
coordinate=np.asarray([0, 0, 0.5]),
timestamp=3
),
Waypoint(
coordinate=np.asarray([1, 0, 0.75]),
timestamp=8
coordinate=np.asarray([0, 0, 0.25]),
timestamp=4
),
Waypoint(
coordinate=np.asarray([0, 0, 1]),
timestamp=10
),
coordinate=np.asarray([0, 0, 0]),
timestamp=5
)
]
T_WAYPOINTS_POLY_ALL = [
Waypoint(
coordinate=np.asarray([1,1,1]),
timestamp=12
coordinate=np.asarray([0, 0, 0]),
timestamp=0
),
Waypoint(
coordinate=np.asarray([1, 0, 0.75]),
timestamp=14
coordinate=np.asarray([0, 0.5, 0.15]),
timestamp=1
),
Waypoint(
coordinate=np.asarray([1, 1, 0.5]),
timestamp=16
coordinate=np.asarray([0.25, 0.25, 0.075]),
timestamp=2
),
Waypoint(
coordinate=np.asarray([0, 0, 0]),
timestamp=18
),
timestamp=3
)
]


Expand All @@ -71,12 +73,24 @@ def get_linear_square_traj_discretized(cls, n_discretization_level: int=100, squ
def get_pol_discretized_trajectory(cls, t_waypoints: Optional[List[Waypoint]]=None, n_points_discretization_level: Optional[int] = None) -> PolynomialDiscretizedTrajectory:

if t_waypoints is None:
t_waypoints = WAYPOINT_BOOTH.T_WAYPOINTS_POLY
t_waypoints = WAYPOINT_BOOTH.T_WAYPOINTS_POLY_ALL
if n_points_discretization_level is None:
n_points_discretization_level = 100

return PolynomialDiscretizedTrajectory(
t_waypoints,
n_points_discretization_level
)

@classmethod
def get_simple_smooth_trajectory(cls, starting_waypoint: Waypoint, t_waypoints: Optional[List[Waypoint]]=None, n_points_discretization_level: Optional[int] = None) -> DiscretizedTrajectory:
if t_waypoints is None:
t_waypoints = [starting_waypoint] + WAYPOINT_BOOTH.T_WAYPOINTS_POLY
if n_points_discretization_level is None:
n_points_discretization_level = 100

return PolynomialDiscretizedTrajectory(
t_waypoints,
n_points_discretization_level
)