-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathDaphneIrExecutor.cpp
311 lines (259 loc) · 13.6 KB
/
DaphneIrExecutor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
/*
* Copyright 2021 The DAPHNE Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "DaphneIrExecutor.h"
#include <util/ErrorHandler.h>
#include <ir/daphneir/Daphne.h>
#include <ir/daphneir/Passes.h.inc>
#include <ir/daphneir/Passes.h>
#include <mlir/Dialect/LLVMIR/LLVMDialect.h>
#include <mlir/Dialect/LLVMIR/Transforms/Passes.h>
#include <filesystem>
#include "mlir/Conversion/AffineToStandard/AffineToStandard.h"
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVMPass.h"
#include "mlir/Conversion/LinalgToLLVM/LinalgToLLVM.h"
#include "mlir/Conversion/MathToLLVM/MathToLLVM.h"
#include "mlir/Conversion/ReconcileUnrealizedCasts/ReconcileUnrealizedCasts.h"
#include "mlir/Conversion/SCFToControlFlow/SCFToControlFlow.h"
#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/Passes.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/Transforms/Passes.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/MemRef/Transforms/Passes.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/ExecutionEngine/ExecutionEngine.h"
#include "mlir/ExecutionEngine/OptUtils.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Target/LLVMIR/Dialect/LLVMIR/LLVMToLLVMIRTranslation.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/Support/TargetSelect.h"
DaphneIrExecutor::DaphneIrExecutor(bool selectMatrixRepresentations, DaphneUserConfig cfg)
: userConfig_(std::move(cfg)), selectMatrixRepresentations_(selectMatrixRepresentations) {
// register loggers
if (userConfig_.log_ptr != nullptr)
userConfig_.log_ptr->registerLoggers();
context_.getOrLoadDialect<mlir::daphne::DaphneDialect>();
context_.getOrLoadDialect<mlir::arith::ArithDialect>();
context_.getOrLoadDialect<mlir::func::FuncDialect>();
context_.getOrLoadDialect<mlir::scf::SCFDialect>();
context_.getOrLoadDialect<mlir::LLVM::LLVMDialect>();
context_.getOrLoadDialect<mlir::AffineDialect>();
context_.getOrLoadDialect<mlir::memref::MemRefDialect>();
context_.getOrLoadDialect<mlir::linalg::LinalgDialect>();
context_.getOrLoadDialect<mlir::math::MathDialect>();
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmPrinter();
}
bool DaphneIrExecutor::runPasses(mlir::ModuleOp module) {
// FIXME: operations in `template` functions (functions with unknown inputs)
// can't be verified
// as their type constraints are not met.
// if (failed(mlir::verify(module))) {
// module->emitError("failed to verify the module right after parsing");
// return false;
//}
if (!module)
return false;
// This flag is really useful to figure out why the lowering failed
llvm::DebugFlag = userConfig_.debug_llvm;
mlir::PassManager pm(&context_);
// TODO Enable the verifier for all passes where it is possible.
// Originally, it was only turned off for the
// SpecializeGenericFunctionsPass.
pm.enableVerifier(false);
if (userConfig_.explain_parsing)
pm.addPass(mlir::daphne::createPrintIRPass("IR after parsing:"));
pm.addPass(mlir::createCanonicalizerPass());
pm.addPass(mlir::createCSEPass());
if (userConfig_.explain_parsing_simplified)
pm.addPass(mlir::daphne::createPrintIRPass("IR after parsing and some simplifications:"));
pm.addPass(mlir::daphne::createRewriteSqlOpPass()); // calls SQL Parser
if (userConfig_.explain_sql)
pm.addPass(mlir::daphne::createPrintIRPass("IR after SQL parsing:"));
pm.addPass(mlir::daphne::createSpecializeGenericFunctionsPass(userConfig_));
if (userConfig_.explain_property_inference)
pm.addPass(mlir::daphne::createPrintIRPass("IR after inference:"));
// Note that property inference and canonicalization have already been done
// in the SpecializeGenericFunctionsPass, so actually, it's not necessary
// here anymore.
// TODO There is a cyclic dependency between (shape) inference and
// constant folding (included in canonicalization), at the moment we
// run only three iterations of both passes (see #173).
pm.addNestedPass<mlir::func::FuncOp>(mlir::daphne::createInferencePass());
pm.addPass(mlir::createCanonicalizerPass());
if (selectMatrixRepresentations_) {
pm.addNestedPass<mlir::func::FuncOp>(mlir::daphne::createSelectMatrixRepresentationsPass(userConfig_));
pm.addNestedPass<mlir::func::FuncOp>(mlir::createCanonicalizerPass());
}
if (userConfig_.explain_select_matrix_repr)
pm.addPass(mlir::daphne::createPrintIRPass("IR after selecting matrix representations:"));
if (userConfig_.use_phy_op_selection) {
pm.addPass(mlir::daphne::createPhyOperatorSelectionPass());
pm.addPass(mlir::createCSEPass());
}
if (userConfig_.explain_phy_op_selection)
pm.addPass(mlir::daphne::createPrintIRPass("IR after selecting physical operators:"));
pm.addNestedPass<mlir::func::FuncOp>(mlir::daphne::createAdaptTypesToKernelsPass());
if (userConfig_.explain_type_adaptation)
pm.addPass(mlir::daphne::createPrintIRPass("IR after type adaptation:"));
// For now, in order to use the distributed runtime we also require the
// vectorized engine to be enabled to create pipelines. Therefore, *if*
// distributed runtime is enabled, we need to make a vectorization pass.
if (userConfig_.use_vectorized_exec || userConfig_.use_distributed) {
// TODO: add inference here if we have rewrites that could apply to
// vectorized pipelines due to smaller sizes
pm.addNestedPass<mlir::func::FuncOp>(mlir::daphne::createVectorizeComputationsPass());
pm.addPass(mlir::createCanonicalizerPass());
}
if (userConfig_.explain_vectorized)
pm.addPass(mlir::daphne::createPrintIRPass("IR after vectorization:"));
if (userConfig_.use_distributed)
pm.addPass(mlir::daphne::createDistributePipelinesPass());
if (userConfig_.use_mlir_codegen || userConfig_.use_mlir_hybrid_codegen)
buildCodegenPipeline(pm);
if (userConfig_.enable_profiling)
pm.addNestedPass<mlir::func::FuncOp>(mlir::daphne::createProfilingPass());
pm.addNestedPass<mlir::func::FuncOp>(mlir::daphne::createInsertDaphneContextPass(userConfig_));
#ifdef USE_CUDA
if (userConfig_.use_cuda)
pm.addNestedPass<mlir::func::FuncOp>(mlir::daphne::createMarkCUDAOpsPass(userConfig_));
#endif
#ifdef USE_FPGAOPENCL
if (userConfig_.use_fpgaopencl)
pm.addNestedPass<mlir::func::FuncOp>(mlir::daphne::createMarkFPGAOPENCLOpsPass(userConfig_));
#endif
// Tidy up the IR before managing object reference counters with IncRefOp
// and DecRefOp. This is important, because otherwise, an SSA value whose
// references are managed could be cleared away by common subexpression
// elimination (CSE), while retaining its IncRefOps/DecRefOps, which could
// lead to double frees etc.
pm.addPass(mlir::createCanonicalizerPass());
pm.addPass(mlir::createCSEPass());
if (userConfig_.use_obj_ref_mgnt)
pm.addNestedPass<mlir::func::FuncOp>(mlir::daphne::createManageObjRefsPass());
if (userConfig_.explain_obj_ref_mgnt)
pm.addPass(mlir::daphne::createPrintIRPass("IR after managing object references:"));
pm.addNestedPass<mlir::func::FuncOp>(mlir::daphne::createRewriteToCallKernelOpPass(userConfig_, usedLibPaths));
if (userConfig_.explain_kernels)
pm.addPass(mlir::daphne::createPrintIRPass("IR after kernel lowering:"));
pm.addPass(mlir::createConvertSCFToCFPass());
pm.addNestedPass<mlir::func::FuncOp>(mlir::LLVM::createRequestCWrappersPass());
pm.addPass(mlir::daphne::createLowerToLLVMPass(userConfig_));
pm.addPass(mlir::createReconcileUnrealizedCastsPass());
if (userConfig_.explain_llvm)
pm.addPass(mlir::daphne::createPrintIRPass("IR after llvm lowering:"));
// Initialize the use of each distinct kernels library to false.
usedLibPaths = userConfig_.kernelCatalog.getLibPaths();
try {
if (failed(pm.run(module))) {
module->dump();
module->emitError("module pass error");
return false;
}
} catch (...) {
ErrorHandler::dumpModuleToDisk(module);
throw;
}
return true;
}
std::unique_ptr<mlir::ExecutionEngine> DaphneIrExecutor::createExecutionEngine(mlir::ModuleOp module) {
if (!module)
return nullptr;
// An optimization pipeline to use within the execution engine.
unsigned optLevel = 0;
unsigned sizeLevel = 0;
llvm::TargetMachine *targetMachine = nullptr;
auto optPipeline = mlir::makeOptimizingTransformer(optLevel, sizeLevel, targetMachine);
// Determine the actually used kernels libraries.
std::vector<llvm::StringRef> sharedLibRefs;
for (auto it = usedLibPaths.begin(); it != usedLibPaths.end(); it++)
if (it->second) {
std::string usedLibPath = it->first;
sharedLibRefPaths.push_back(usedLibPath);
sharedLibRefs.emplace_back(sharedLibRefPaths.back());
// Check if the used kernels library really exists at the expected
// path and throw an understandable error, otherwise.
if (!std::filesystem::exists(usedLibPath))
throw std::runtime_error("the shared library `" + usedLibPath +
"` is needed for some kernel, but the file does not exist");
}
registerLLVMDialectTranslation(context_);
// module.dump();
mlir::ExecutionEngineOptions options;
options.llvmModuleBuilder = nullptr;
options.transformer = optPipeline;
options.jitCodeGenOptLevel = llvm::CodeGenOpt::Level::Default;
options.sharedLibPaths = llvm::ArrayRef<llvm::StringRef>(sharedLibRefs);
options.enableObjectDump = true;
options.enableGDBNotificationListener = true;
options.enablePerfNotificationListener = true;
auto maybeEngine = mlir::ExecutionEngine::create(module, options);
if (!maybeEngine) {
llvm::errs() << "Failed to create JIT-Execution engine: " << maybeEngine.takeError();
return nullptr;
}
return std::move(maybeEngine.get());
}
void DaphneIrExecutor::buildCodegenPipeline(mlir::PassManager &pm) {
if (userConfig_.explain_mlir_codegen)
pm.addPass(mlir::daphne::createPrintIRPass("IR before codegen pipeline"));
pm.addPass(mlir::daphne::createDaphneOptPass());
pm.addPass(mlir::daphne::createSparsityExploitationPass());
// SparseExploit fuses multiple operations which only need to be lowered if still needed elsewhere.
// Todo: if possible, run only if SparseExploitLowering was successful.
pm.addPass(mlir::createCanonicalizerPass());
if (userConfig_.explain_mlir_codegen_sparsity_exploiting_op_fusion)
pm.addPass(mlir::daphne::createPrintIRPass("IR after MLIR codegen (sparsity-exploiting operator fusion):"));
pm.addPass(mlir::daphne::createEwOpLoweringPass());
pm.addPass(mlir::daphne::createAggAllOpLoweringPass());
pm.addPass(mlir::daphne::createAggDimOpLoweringPass());
pm.addPass(mlir::daphne::createMapOpLoweringPass());
pm.addPass(mlir::daphne::createTransposeOpLoweringPass());
pm.addPass(mlir::createInlinerPass());
pm.addNestedPass<mlir::func::FuncOp>(mlir::createLoopFusionPass());
if (!userConfig_.use_mlir_hybrid_codegen) {
pm.addPass(mlir::daphne::createMatMulOpLoweringPass(
userConfig_.matmul_tile, userConfig_.matmul_vec_size_bits, userConfig_.matmul_fixed_tile_sizes,
userConfig_.matmul_use_fixed_tile_sizes, userConfig_.matmul_unroll_factor,
userConfig_.matmul_unroll_jam_factor, userConfig_.matmul_num_vec_registers,
userConfig_.matmul_invert_loops));
if (userConfig_.explain_mlir_codegen)
pm.addPass(mlir::daphne::createPrintIRPass("IR directly after lowering MatMulOp."));
}
if (userConfig_.explain_mlir_codegen_daphneir_to_mlir)
pm.addPass(mlir::daphne::createPrintIRPass("IR after MLIR codegen (DaphneIR to MLIR):"));
pm.addPass(mlir::createConvertMathToLLVMPass());
pm.addPass(mlir::daphne::createModOpLoweringPass());
pm.addPass(mlir::createCanonicalizerPass());
pm.addPass(mlir::createCSEPass());
pm.addNestedPass<mlir::func::FuncOp>(mlir::createLinalgGeneralizationPass());
pm.addNestedPass<mlir::func::FuncOp>(mlir::createConvertLinalgToAffineLoopsPass());
pm.addNestedPass<mlir::func::FuncOp>(mlir::memref::createFoldMemRefAliasOpsPass());
pm.addPass(mlir::memref::createNormalizeMemRefsPass());
pm.addNestedPass<mlir::func::FuncOp>(mlir::createAffineScalarReplacementPass());
pm.addPass(mlir::createLowerAffinePass());
mlir::LowerVectorToLLVMOptions lowerVectorToLLVMOptions;
pm.addPass(mlir::createConvertVectorToLLVMPass(lowerVectorToLLVMOptions));
if (userConfig_.explain_mlir_codegen)
pm.addPass(mlir::daphne::createPrintIRPass("IR after codegen pipeline"));
if (userConfig_.explain_mlir_codegen_mlir_specific)
pm.addPass(mlir::daphne::createPrintIRPass("IR after MLIR codegen (MLIR-specific):"));
}