-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathRandMatrixTest.cpp
67 lines (55 loc) · 2.13 KB
/
RandMatrixTest.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/*
* Copyright 2021 The DAPHNE Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <runtime/local/datastructures/CSRMatrix.h>
#include <runtime/local/datastructures/DataObjectFactory.h>
#include <runtime/local/datastructures/DenseMatrix.h>
#include <runtime/local/kernels/RandMatrix.h>
#include <tags.h>
#include <catch.hpp>
#include <vector>
#include <cmath>
#include <cstdint>
#define DATA_TYPES DenseMatrix, CSRMatrix, Matrix
#define VALUE_TYPES double, float, uint32_t, uint8_t
TEMPLATE_PRODUCT_TEST_CASE("RandMatrix", TAG_KERNELS, (DATA_TYPES), (VALUE_TYPES)) {
using DT = TestType;
using VT = typename DT::VT;
const size_t numRows = 100;
const size_t numCols = 50;
const VT min = 100;
const VT max = 200;
for (double sparsity : {0.0, 0.1, 0.5, 0.9, 1.0}) {
DYNAMIC_SECTION("sparsity = " << sparsity) {
DT *m = nullptr;
randMatrix<DT, VT>(m, numRows, numCols, min, max, sparsity, -1, nullptr);
REQUIRE(m->getNumRows() == numRows);
REQUIRE(m->getNumCols() == numCols);
size_t numNonZeros = 0;
for (size_t r = 0; r < numRows; r++)
for (size_t c = 0; c < numCols; c++) {
const VT v = m->get(r, c);
if (v) {
CHECK(v >= min);
CHECK(v <= max);
numNonZeros++;
}
}
const size_t numNonZerosExpected = size_t(round(sparsity * numRows * numCols));
CHECK(numNonZerosExpected == numNonZeros);
DataObjectFactory::destroy(m);
}
}
}