+penguinsTidy <- penguinsSummary |>
+ filter(!estimate_name %in% c("density_x", "density_y")) |> # remove density for simplicity
+ tidy()
+penguinsTidy |> glimpse()
+#> Rows: 720
+#> Columns: 14
+#> $ cdm_name <chr> "Torgersen", "Torgersen", "Torgersen", "Torgersen", "To…
+#> $ species <chr> "overall", "overall", "overall", "overall", "overall", …
+#> $ year <chr> "overall", "overall", "overall", "overall", "overall", …
+#> $ sex <chr> "overall", "overall", "overall", "overall", "overall", …
+#> $ variable_name <chr> "number records", "bill_length_mm", "bill_depth_mm", "f…
+#> $ variable_level <chr> NA, NA, NA, NA, NA, "female", "male", NA, NA, NA, NA, N…
+#> $ count <int> 52, NA, NA, NA, NA, 24, 23, 5, 20, 16, 16, NA, NA, NA, …
+#> $ median <int> NA, 38, 18, 191, 3700, NA, NA, NA, NA, NA, NA, 38, 38, …
+#> $ q25 <int> NA, 36, 17, 187, 3338, NA, NA, NA, NA, NA, NA, 37, 35, …
+#> $ q75 <int> NA, 41, 19, 195, 4000, NA, NA, NA, NA, NA, NA, 39, 41, …
+#> $ min <int> NA, 33, 15, 176, 2900, NA, NA, NA, NA, NA, NA, 34, 33, …
+#> $ max <int> NA, 46, 21, 210, 4700, NA, NA, NA, NA, NA, NA, 46, 45, …
+#> $ count_missing <int> NA, 1, 1, 1, 1, NA, NA, NA, NA, NA, NA, 1, 0, 0, 1, 0, …
+#> $ percentage <dbl> NA, NA, NA, NA, NA, 46.153846, 44.230769, 9.615385, NA,…
Using this tidy format, we can replicate plots. For instance, we
+recreate the previous example: