Skip to content

BasicCSVClassifier does not classify at all #937

Open
@dkunzinfa

Description

@dkunzinfa

Issue Description

Running BasicCSVClassifier results in a bad classifcation stats:

o.n.l.f.Nd4jBackend - Loaded [CpuBackend] backend
o.n.n.NativeOpsHolder - Number of threads used for linear algebra: 4
o.n.l.c.n.CpuNDArrayFactory - *********************************** CPU Feature Check Warning ***********************************
o.n.l.c.n.CpuNDArrayFactory - Warning: Initializing ND4J with Generic x86 binary on a CPU with AVX/AVX2 support
o.n.l.c.n.CpuNDArrayFactory - Using ND4J with AVX/AVX2 will improve performance. See deeplearning4j.org/cpu for more details
o.n.l.c.n.CpuNDArrayFactory - Or set environment variable ND4J_IGNORE_AVX=true to suppress this warning
o.n.l.c.n.CpuNDArrayFactory - *************************************************************************************************
o.n.n.Nd4jBlas - Number of threads used for OpenMP BLAS: 4
o.n.l.a.o.e.DefaultOpExecutioner - Backend used: [CPU]; OS: [Windows 10]
o.n.l.a.o.e.DefaultOpExecutioner - Cores: [8]; Memory: [14,2GB];
o.n.l.a.o.e.DefaultOpExecutioner - Blas vendor: [OPENBLAS]
o.d.e.d.BasicCSVClassifier - Build model....
o.d.n.m.MultiLayerNetwork - Starting MultiLayerNetwork with WorkspaceModes set to [training: ENABLED; inference: ENABLED], cacheMode set to [NONE]
o.d.o.l.ScoreIterationListener - Score at iteration 0 is 1.2347359410511736
o.d.o.l.ScoreIterationListener - Score at iteration 100 is 0.1004844711532599
o.d.o.l.ScoreIterationListener - Score at iteration 200 is 0.039669264507044
o.d.o.l.ScoreIterationListener - Score at iteration 300 is 0.024435827880011744
o.d.o.l.ScoreIterationListener - Score at iteration 400 is 0.017831637223516515
o.d.o.l.ScoreIterationListener - Score at iteration 500 is 0.014205604188074546
o.d.o.l.ScoreIterationListener - Score at iteration 600 is 0.011934892657567751
o.d.o.l.ScoreIterationListener - Score at iteration 700 is 0.010388604478515275
o.d.o.l.ScoreIterationListener - Score at iteration 800 is 0.009272695178875455
o.d.o.l.ScoreIterationListener - Score at iteration 900 is 0.00843236932311402
o.d.e.d.BasicCSVClassifier - 

========================Evaluation Metrics========================
 # of classes:    3
 Accuracy:        0,1818
 Precision:       0,3333
 Recall:          0,1818	(2 classes excluded from average)
 F1 Score:        0,3077	(2 classes excluded from average)
Precision, recall & F1: macro-averaged (equally weighted avg. of 3 classes)

Warning: 2 classes were never predicted by the model and were excluded from average recall
Classes excluded from average recall: [1, 2]

=========================Confusion Matrix=========================
  0  1  2
----------
  8 13 23 | 0 = 0
  0  0  0 | 1 = 1
  0  0  0 | 2 = 2

Confusion matrix format: Actual (rowClass) predicted as (columnClass) N times
==================================================================

Version Information

  • 1.0.0-beta6
  • WIN10

Question

Is it a configuration error in any form? Or is the example just not working with the newest version?

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions