Skip to content

Latest commit

 

History

History
72 lines (58 loc) · 3.34 KB

README.md

File metadata and controls

72 lines (58 loc) · 3.34 KB

How to generate chain tables

Suppose we are going to setup a small 3FS cluster:

  • 3 replicas for each chunk
  • 5 storage nodes: 10001 ... 10005
  • 16 SSDs attached to each node
  • 6 storage targets on each SSD

Install dependencies

The data placement problem is formulated using Pyomo and solved with the HiGHS solver. Install them and other dependencies:

$ cd deploy/data_placement
$ pip install -r requirements.txt

Generate chain table

First generate a solution of the data placement problem.

$ cd deploy/data_placement
$ python src/model/data_placement.py -ql -relax -type CR --num_nodes 5 --replication_factor 3 --min_targets_per_disk 6 --init_timelimit 600

...

2025-02-24 14:25:13.623 | SUCCESS  | __main__:solve:165 - optimal solution: 
- Status: ok
  Termination condition: optimal
  Termination message: TerminationCondition.optimal

2025-02-24 14:25:13.624 | DEBUG    | __main__:check_solution:322 - 1,2: 1.5
2025-02-24 14:25:13.624 | DEBUG    | __main__:check_solution:322 - 1,3: 1.5
2025-02-24 14:25:13.624 | DEBUG    | __main__:check_solution:322 - 1,4: 1.5
2025-02-24 14:25:13.624 | DEBUG    | __main__:check_solution:322 - 1,5: 1.5
2025-02-24 14:25:13.624 | DEBUG    | __main__:check_solution:322 - 2,1: 1.5
2025-02-24 14:25:13.624 | DEBUG    | __main__:check_solution:322 - 2,3: 1.5
2025-02-24 14:25:13.624 | DEBUG    | __main__:check_solution:322 - 2,4: 1.5
2025-02-24 14:25:13.624 | DEBUG    | __main__:check_solution:322 - 2,5: 1.5
2025-02-24 14:25:13.624 | DEBUG    | __main__:check_solution:322 - 3,1: 1.5
2025-02-24 14:25:13.624 | DEBUG    | __main__:check_solution:322 - 3,2: 1.5
2025-02-24 14:25:13.624 | DEBUG    | __main__:check_solution:322 - 3,4: 1.5
2025-02-24 14:25:13.624 | DEBUG    | __main__:check_solution:322 - 3,5: 1.5
2025-02-24 14:25:13.624 | DEBUG    | __main__:check_solution:322 - 4,1: 1.5
2025-02-24 14:25:13.624 | DEBUG    | __main__:check_solution:322 - 4,2: 1.5
2025-02-24 14:25:13.624 | DEBUG    | __main__:check_solution:322 - 4,3: 1.5
2025-02-24 14:25:13.624 | DEBUG    | __main__:check_solution:322 - 4,5: 1.5
2025-02-24 14:25:13.624 | DEBUG    | __main__:check_solution:322 - 5,1: 1.5
2025-02-24 14:25:13.624 | DEBUG    | __main__:check_solution:322 - 5,2: 1.5
2025-02-24 14:25:13.624 | DEBUG    | __main__:check_solution:322 - 5,3: 1.5
2025-02-24 14:25:13.624 | DEBUG    | __main__:check_solution:322 - 5,4: 1.5
2025-02-24 14:25:13.624 | INFO     | __main__:check_solution:331 - min_peer_traffic=1.5 max_peer_traffic=1.5
2025-02-24 14:25:13.624 | INFO     | __main__:check_solution:332 - total_traffic=30.0 max_total_traffic=30
2025-02-24 14:25:14.147 | SUCCESS  | __main__:run:147 - saved solution to: output/DataPlacementModel-v_5-b_10-r_6-k_3-λ_2-lb_1-ub_1

Note that some combinations of --num_nodes and --replication_factor may have no solution.

Then generate commands to create/remove storage targets and the chain table.

$ python src/setup/gen_chain_table.py --chain_table_type CR --node_id_begin 10001 --node_id_end 10005 --num_disks_per_node 16 --num_targets_per_disk 6 --incidence_matrix_path output/DataPlacementModel-v_5-b_10-r_6-k_3-λ_2-lb_1-ub_1/incidence_matrix.pickle

$ ls -1 output/
DataPlacementModel-v_5-b_10-r_6-k_3-λ_2-lb_1-ub_1
appsi_highs.log
create_target_cmd.txt
generated_chain_table.csv
generated_chains.csv
remove_target_cmd.txt