-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathtest_azure_document_embedder.py
270 lines (248 loc) · 12.3 KB
/
test_azure_document_embedder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
#
# SPDX-License-Identifier: Apache-2.0
import os
from openai import APIError
from haystack.utils.auth import Secret
import pytest
import httpx
from haystack import Document
from haystack.components.embedders import AzureOpenAIDocumentEmbedder
from haystack.utils.azure import default_azure_ad_token_provider
from unittest.mock import Mock, patch
from haystack.utils.http_client import init_http_client
class TestAzureOpenAIDocumentEmbedder:
def test_init_default(self, monkeypatch):
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key")
embedder = AzureOpenAIDocumentEmbedder(azure_endpoint="https://example-resource.azure.openai.com/")
assert embedder.azure_deployment == "text-embedding-ada-002"
assert embedder.model == "text-embedding-ada-002"
assert embedder.dimensions is None
assert embedder.organization is None
assert embedder.prefix == ""
assert embedder.suffix == ""
assert embedder.batch_size == 32
assert embedder.progress_bar is True
assert embedder.meta_fields_to_embed == []
assert embedder.embedding_separator == "\n"
assert embedder.default_headers == {}
assert embedder.azure_ad_token_provider is None
assert embedder.http_client_kwargs is None
def test_init_with_0_max_retries(self, monkeypatch):
"""Tests that the max_retries init param is set correctly if equal 0"""
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key")
embedder = AzureOpenAIDocumentEmbedder(
azure_endpoint="https://example-resource.azure.openai.com/", max_retries=0
)
assert embedder.azure_deployment == "text-embedding-ada-002"
assert embedder.model == "text-embedding-ada-002"
assert embedder.dimensions is None
assert embedder.organization is None
assert embedder.prefix == ""
assert embedder.suffix == ""
assert embedder.batch_size == 32
assert embedder.progress_bar is True
assert embedder.meta_fields_to_embed == []
assert embedder.embedding_separator == "\n"
assert embedder.default_headers == {}
assert embedder.azure_ad_token_provider is None
assert embedder.max_retries == 0
def test_to_dict(self, monkeypatch):
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key")
component = AzureOpenAIDocumentEmbedder(azure_endpoint="https://example-resource.azure.openai.com/")
data = component.to_dict()
assert data == {
"type": "haystack.components.embedders.azure_document_embedder.AzureOpenAIDocumentEmbedder",
"init_parameters": {
"api_key": {"env_vars": ["AZURE_OPENAI_API_KEY"], "strict": False, "type": "env_var"},
"azure_ad_token": {"env_vars": ["AZURE_OPENAI_AD_TOKEN"], "strict": False, "type": "env_var"},
"api_version": "2023-05-15",
"azure_deployment": "text-embedding-ada-002",
"dimensions": None,
"azure_endpoint": "https://example-resource.azure.openai.com/",
"organization": None,
"prefix": "",
"suffix": "",
"batch_size": 32,
"progress_bar": True,
"meta_fields_to_embed": [],
"embedding_separator": "\n",
"max_retries": 5,
"timeout": 30.0,
"default_headers": {},
"azure_ad_token_provider": None,
"http_client_kwargs": None,
},
}
def test_to_dict_with_parameters(self, monkeypatch):
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key")
component = AzureOpenAIDocumentEmbedder(
azure_endpoint="https://example-resource.azure.openai.com/",
azure_deployment="text-embedding-ada-002",
dimensions=768,
organization="HaystackCI",
timeout=60.0,
max_retries=10,
prefix="prefix ",
suffix=" suffix",
default_headers={"x-custom-header": "custom-value"},
azure_ad_token_provider=default_azure_ad_token_provider,
http_client_kwargs={"proxy": "http://example.com:3128", "verify": False},
)
data = component.to_dict()
assert data == {
"type": "haystack.components.embedders.azure_document_embedder.AzureOpenAIDocumentEmbedder",
"init_parameters": {
"api_key": {"env_vars": ["AZURE_OPENAI_API_KEY"], "strict": False, "type": "env_var"},
"azure_ad_token": {"env_vars": ["AZURE_OPENAI_AD_TOKEN"], "strict": False, "type": "env_var"},
"api_version": "2023-05-15",
"azure_deployment": "text-embedding-ada-002",
"dimensions": 768,
"azure_endpoint": "https://example-resource.azure.openai.com/",
"organization": "HaystackCI",
"prefix": "prefix ",
"suffix": " suffix",
"batch_size": 32,
"progress_bar": True,
"meta_fields_to_embed": [],
"embedding_separator": "\n",
"max_retries": 10,
"timeout": 60.0,
"default_headers": {"x-custom-header": "custom-value"},
"azure_ad_token_provider": "haystack.utils.azure.default_azure_ad_token_provider",
"http_client_kwargs": {"proxy": "http://example.com:3128", "verify": False},
},
}
def test_from_dict(self, monkeypatch):
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key")
data = {
"type": "haystack.components.embedders.azure_document_embedder.AzureOpenAIDocumentEmbedder",
"init_parameters": {
"api_key": {"env_vars": ["AZURE_OPENAI_API_KEY"], "strict": False, "type": "env_var"},
"azure_ad_token": {"env_vars": ["AZURE_OPENAI_AD_TOKEN"], "strict": False, "type": "env_var"},
"api_version": "2023-05-15",
"azure_deployment": "text-embedding-ada-002",
"dimensions": None,
"azure_endpoint": "https://example-resource.azure.openai.com/",
"organization": None,
"prefix": "",
"suffix": "",
"batch_size": 32,
"progress_bar": True,
"meta_fields_to_embed": [],
"embedding_separator": "\n",
"max_retries": 5,
"timeout": 30.0,
"default_headers": {},
"azure_ad_token_provider": None,
"http_client_kwargs": None,
},
}
component = AzureOpenAIDocumentEmbedder.from_dict(data)
assert component.azure_deployment == "text-embedding-ada-002"
assert component.azure_endpoint == "https://example-resource.azure.openai.com/"
assert component.api_version == "2023-05-15"
assert component.max_retries == 5
assert component.timeout == 30.0
assert component.prefix == ""
assert component.suffix == ""
assert component.default_headers == {}
assert component.azure_ad_token_provider is None
assert component.http_client_kwargs is None
def test_from_dict_with_parameters(self, monkeypatch):
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key")
data = {
"type": "haystack.components.embedders.azure_document_embedder.AzureOpenAIDocumentEmbedder",
"init_parameters": {
"api_key": {"env_vars": ["AZURE_OPENAI_API_KEY"], "strict": False, "type": "env_var"},
"azure_ad_token": {"env_vars": ["AZURE_OPENAI_AD_TOKEN"], "strict": False, "type": "env_var"},
"api_version": "2023-05-15",
"azure_deployment": "text-embedding-ada-002",
"dimensions": 768,
"azure_endpoint": "https://example-resource.azure.openai.com/",
"organization": "HaystackCI",
"prefix": "prefix ",
"suffix": " suffix",
"batch_size": 32,
"progress_bar": True,
"meta_fields_to_embed": [],
"embedding_separator": "\n",
"max_retries": 10,
"timeout": 60.0,
"default_headers": {"x-custom-header": "custom-value"},
"azure_ad_token_provider": "haystack.utils.azure.default_azure_ad_token_provider",
"http_client_kwargs": {"proxy": "http://example.com:3128", "verify": False},
},
}
component = AzureOpenAIDocumentEmbedder.from_dict(data)
assert component.azure_deployment == "text-embedding-ada-002"
assert component.azure_endpoint == "https://example-resource.azure.openai.com/"
assert component.api_version == "2023-05-15"
assert component.max_retries == 10
assert component.timeout == 60.0
assert component.prefix == "prefix "
assert component.suffix == " suffix"
assert component.default_headers == {"x-custom-header": "custom-value"}
assert component.azure_ad_token_provider is not None
assert component.http_client_kwargs == {"proxy": "http://example.com:3128", "verify": False}
def test_embed_batch_handles_exceptions_gracefully(self, caplog):
embedder = AzureOpenAIDocumentEmbedder(
azure_endpoint="https://test.openai.azure.com",
api_key=Secret.from_token("fake-api-key"),
azure_deployment="text-embedding-ada-002",
embedding_separator=" | ",
)
fake_texts_to_embed = {"1": "text1", "2": "text2"}
with patch.object(
embedder.client.embeddings,
"create",
side_effect=APIError(message="Mocked error", request=Mock(), body=None),
):
embedder._embed_batch(texts_to_embed=fake_texts_to_embed, batch_size=32)
assert len(caplog.records) == 1
assert "Failed embedding of documents 1, 2 caused by Mocked error" in caplog.text
def test_init_http_client(self, monkeypatch):
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key")
monkeypatch.setenv("AZURE_OPENAI_ENDPOINT", "https://test.openai.azure.com")
embedder = AzureOpenAIDocumentEmbedder()
client = init_http_client(embedder.http_client_kwargs, async_client=False)
assert client is None
embedder.http_client_kwargs = {"proxy": "http://example.com:3128"}
client = init_http_client(embedder.http_client_kwargs, async_client=False)
assert isinstance(client, httpx.Client)
client = init_http_client(embedder.http_client_kwargs, async_client=True)
assert isinstance(client, httpx.AsyncClient)
@pytest.mark.integration
@pytest.mark.skipif(
not os.environ.get("AZURE_OPENAI_API_KEY", None) and not os.environ.get("AZURE_OPENAI_ENDPOINT", None),
reason=(
"Please export env variables called AZURE_OPENAI_API_KEY containing "
"the Azure OpenAI key, AZURE_OPENAI_ENDPOINT containing "
"the Azure OpenAI endpoint URL to run this test."
),
)
def test_run(self):
docs = [
Document(content="I love cheese", meta={"topic": "Cuisine"}),
Document(content="A transformer is a deep learning architecture", meta={"topic": "ML"}),
]
# the default model is text-embedding-ada-002 even if we don't specify it, but let's be explicit
embedder = AzureOpenAIDocumentEmbedder(
azure_deployment="text-embedding-ada-002",
meta_fields_to_embed=["topic"],
embedding_separator=" | ",
organization="HaystackCI",
)
result = embedder.run(documents=docs)
documents_with_embeddings = result["documents"]
metadata = result["meta"]
assert isinstance(documents_with_embeddings, list)
assert len(documents_with_embeddings) == len(docs)
for doc in documents_with_embeddings:
assert isinstance(doc, Document)
assert isinstance(doc.embedding, list)
assert len(doc.embedding) == 1536
assert all(isinstance(x, float) for x in doc.embedding)
assert metadata["usage"]["prompt_tokens"] == 15
assert metadata["usage"]["total_tokens"] == 15
assert "ada" in metadata["model"]