-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVelocyto.Rmd
36 lines (32 loc) · 968 Bytes
/
Velocyto.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
---
title: "Velocity Project"
author: "D. Ford Hannum Jr."
date: "7/30/2020"
output:
html_document:
toc: true
toc_depth: 3
number_sections: false
theme: united
highlight: tango
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE, message = FALSE)
library(Seurat)
library(ggplot2)
library(data.table)
library(MAST)
```
Looking at using the velocyto package that Qianyi showed in a CZI presentation.
```{r loading data}
wbm <- readRDS('./data/wbm_clustered_filtered_named.rds')
#DimPlot(wbm, reduction = 'umap', label = T, repel = T) + NoLegend()
```
```{r changing the levels of the data}
new_levels <- c('Granulocyte','Granulocyte','Granulocyte', 'B-cell','MEP',
'Granulocyte', 'Granulocyte','Monocyte','Macrophage','Erythroid','B-cell',
'T-cell/NK', 'MK')
names(new_levels) <- levels(wbm)
#new_levels
wbm <- RenameIdents(wbm, new_levels)
```