Skip to content

Commit

Permalink
black formatting
Browse files Browse the repository at this point in the history
  • Loading branch information
dioph committed Aug 22, 2024
1 parent 99cf9f2 commit bf340f9
Show file tree
Hide file tree
Showing 7 changed files with 21 additions and 21 deletions.
6 changes: 3 additions & 3 deletions src/periodicity/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -148,7 +148,7 @@ def from_xray(self, result):
return type(self)(result)

def __array_function__(self, func, types, args, kwargs):
""""https://numpy.org/doc/stable/reference/arrays.classes.html#numpy.class.__array_function__"""
"""https://numpy.org/doc/stable/reference/arrays.classes.html#numpy.class.__array_function__"""
if func not in HANDLED_FUNCTIONS:
return NotImplemented
if not all(issubclass(t, Signal) for t in types):
Expand Down Expand Up @@ -418,14 +418,14 @@ def smooth(self, width, kernel="gaussian", **kwargs):
xf = ndimage.gaussian_filter(self.values, sigma=width, **kwargs)
elif kernel == "boxcar":
if width % 2 == 0:
weight = np.ones((width + 1,) * self.ndim) / width ** self.ndim
weight = np.ones((width + 1,) * self.ndim) / width**self.ndim
edges = [slice(None)] * self.ndim
for i in range(self.ndim):
edges[i] = [0, -1]
weight[tuple(edges)] /= 2
edges[i] = slice(None)
else:
weight = np.ones((width,) * self.ndim) / width ** self.ndim
weight = np.ones((width,) * self.ndim) / width**self.ndim
xf = self.convolve(weight).values
elif kernel == "triangle":
half = int(width // 2)
Expand Down
4 changes: 2 additions & 2 deletions src/periodicity/data/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -167,7 +167,7 @@ def DuffingWave():
"""
t = np.arange(1024)
data = np.exp(-t / 256) * np.cos(
(np.pi / 64) * (t ** 2 / 512 + 32)
+ 0.3 * np.sin((np.pi / 32) * (t ** 2 / 512 + 32))
(np.pi / 64) * (t**2 / 512 + 32)
+ 0.3 * np.sin((np.pi / 32) * (t**2 / 512 + 32))
)
return data
16 changes: 8 additions & 8 deletions src/periodicity/gp.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,10 @@
import celerite2
# import celerite2.pymc4
# import pymc as pm
# import pymc_ext as pmx
import celerite2
import emcee
import george
import numpy as np
# import pymc as pm
# import pymc_ext as pmx
from scipy.optimize import minimize
from scipy.stats import norm

Expand Down Expand Up @@ -361,7 +361,7 @@ def period_ppf(u):
mean = init_params.pop("mean")
jitter = init_params.pop("jitter")
self.gp = celerite2.GaussianProcess(self.kernel(**init_params), mean=mean)
self.gp.compute(self.t, diag=self.err ** 2 + jitter)
self.gp.compute(self.t, diag=self.err**2 + jitter)

def prior_transform(self, u):
raise NotImplementedError("subclasses must implement this method")
Expand All @@ -370,7 +370,7 @@ def set_params(self, params, gp):
gp.mean = params.pop("mean")
jitter = params.pop("jitter")
gp.kernel = self.kernel(**params)
gp.compute(self.t, diag=self.err ** 2 + jitter, quiet=True)
gp.compute(self.t, diag=self.err**2 + jitter, quiet=True)
return gp

def get_psd(self, frequency, gp):
Expand All @@ -390,7 +390,7 @@ def loocv(self, gp):
q = gp._do_solve(r[:, np.newaxis])[:, 0]
c = gp._do_solve(np.eye(self.signal.size)).diagonal()
return -0.5 * (
np.sum(q ** 2 / c)
np.sum(q**2 / c)
- np.sum(np.log(c))
+ self.signal.size * np.log(2 * np.pi)
)
Expand Down Expand Up @@ -488,9 +488,9 @@ class BrownianTerm(celerite2.terms.TermSum):
def __init__(self, sigma, tau, period, mix):
Q = 0.01
sigma_1 = sigma * np.sqrt(mix)
f = np.sqrt(1 - 4 * Q ** 2)
f = np.sqrt(1 - 4 * Q**2)
w0 = 2 * Q / (tau * (1 - f))
S0 = (1 - mix) * sigma ** 2 / (0.5 * w0 * Q * (1 + 1 / f))
S0 = (1 - mix) * sigma**2 / (0.5 * w0 * Q * (1 + 1 / f))
super().__init__(
celerite2.terms.SHOTerm(sigma=sigma_1, tau=tau, rho=period),
celerite2.terms.SHOTerm(S0=S0, w0=w0, Q=Q),
Expand Down
2 changes: 1 addition & 1 deletion src/periodicity/phase.py
Original file line number Diff line number Diff line change
Expand Up @@ -163,7 +163,7 @@ def __call__(self, signal):
self.t = signal.time
self.x = signal.values
self.sigma = np.var(signal.values, ddof=1)
theta_crit = 1.0 - 11.0 / signal.size ** 0.8
theta_crit = 1.0 - 11.0 / signal.size**0.8
t0 = signal.baseline
if self.p_min is None:
p_min = 2 * signal.median_dt
Expand Down
8 changes: 4 additions & 4 deletions src/periodicity/spectral.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,7 @@ def __call__(self, signal, err=None, fit_mean=True):
if err is None:
err = np.ones_like(signal.values)
self.err = err
w = err ** -2.0
w = err**-2.0
w /= w.sum()
t = signal.time
if fit_mean:
Expand All @@ -117,7 +117,7 @@ def __call__(self, signal, err=None, fit_mean=True):
C2w = 1 / np.sqrt(1 + tan_2omega_tau * tan_2omega_tau)
Cw = np.sqrt(0.5) * np.sqrt(1 + C2w)
Sw = np.sqrt(0.5) * np.sign(S2w) * np.sqrt(1 - C2w)
YY = np.dot(w, y ** 2)
YY = np.dot(w, y**2)
YC = Ch * Cw + Sh * Sw
YS = Sh * Cw - Ch * Sw
CC = 0.5 * (1 + C2 * C2w + S2 * S2w)
Expand All @@ -127,7 +127,7 @@ def __call__(self, signal, err=None, fit_mean=True):
SS -= (S * Cw - C * Sw) ** 2
power = YC * YC / CC + YS * YS / SS
if self.psd:
power *= 0.5 * (err ** -2.0).sum()
power *= 0.5 * (err**-2.0).sum()
else:
power /= YY
self.signal = signal
Expand Down Expand Up @@ -183,7 +183,7 @@ def model(self, tf, f0):
"""
t = self.signal.time
y = self.signal.values
w = self.err ** -2.0
w = self.err**-2.0
y_mean = np.dot(y, w) / w.sum()
y = y - y_mean
X = (
Expand Down
4 changes: 2 additions & 2 deletions src/periodicity/timefrequency.py
Original file line number Diff line number Diff line change
Expand Up @@ -109,7 +109,7 @@ def __call__(self, signal):
if self.method == "DQ":
A, F = self._normalize(mode)
amp = A.values
phi = np.arctan2(np.sqrt(1 - F.values ** 2), F.values)
phi = np.arctan2(np.sqrt(1 - F.values**2), F.values)
corr = np.sign(np.gradient(phi))
phi = np.unwrap(phi * corr)
freq = np.gradient(phi, F.time)
Expand Down Expand Up @@ -163,7 +163,7 @@ def reconstruct(coefs, periods, dt, family):
scales = pywt.scale2frequency(family, 1) * periods / dt
mwf = pywt.ContinuousWavelet("morl").wavefun()
y_0 = mwf[0][np.argmin(np.abs(mwf[1]))]
r_sum = np.transpose(np.sum(np.transpose(coefs) / scales ** 0.5, axis=-1))
r_sum = np.transpose(np.sum(np.transpose(coefs) / scales**0.5, axis=-1))
return r_sum * (1 / y_0)


Expand Down
2 changes: 1 addition & 1 deletion tests/test_gp.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

from periodicity.core import TSeries
from periodicity.data import SpottedStar
from periodicity.gp import BrownianGP, HarmonicGP, QuasiPeriodicGP, make_gaussian_prior
from periodicity.gp import BrownianGP, HarmonicGP, make_gaussian_prior


def test_make_gaussian_prior_spotted_lc():
Expand Down

0 comments on commit bf340f9

Please sign in to comment.