diff --git a/node-hub/dora-parler/dora_parler/main.py b/node-hub/dora-parler/dora_parler/main.py index d3cbbfb8f..b57a1f696 100644 --- a/node-hub/dora-parler/dora_parler/main.py +++ b/node-hub/dora-parler/dora_parler/main.py @@ -24,7 +24,7 @@ repo_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True ).to(device) model.generation_config.cache_implementation = "static" -model.forward = torch.compile(model.forward, mode="reduce-overhead") +model.forward = torch.compile(model.forward, mode="default") tokenizer = AutoTokenizer.from_pretrained(repo_id) feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id) @@ -36,7 +36,6 @@ default_description = ( "Jenny delivers her words quite expressively, in a very confined sounding environment with clear audio quality.", ) -init_sleep = True p = pyaudio.PyAudio() @@ -78,7 +77,6 @@ def generate_base( play_steps_in_s=0.5, ): prev_time = time.time() - global init_sleep play_steps = int(frame_rate * play_steps_in_s) inputs = tokenizer(description, return_tensors="pt").to(device) prompt = tokenizer(text, return_tensors="pt").to(device) @@ -119,14 +117,13 @@ def generate_base( stopping_criteria.stop() break elif event["id"] == "text": - text = event["value"][0].as_py() stopping_criteria.stop() + + text = event["value"][0].as_py() generate_base(node, text, default_description, 0.5) def main(): - generate_base(None, "Ready !", default_description, 0.5) - generate_base(None, "Ready !", default_description, 0.5) generate_base(None, "Ready !", default_description, 0.5) node = Node() while True: